Bài 46 trang 97 SGK Đại số và Giải tích 12 Nâng cao


Đề bài

Cho biết chu kì bán hủy của chất phóng xạ Plutanium \(P{u^{239}}\) là 24360 năm (tức là một lượng \(P{u^{239}}\) sau 24360 năm phân hủy chỉ còn lại một nửa). Sự phân hủy được tính theo công thức \(S = A.{e^{rt}}\), trong đó A là lượng chất phóng xạ ban đầu, r là tỉ lệ phân hủy hàng năm (r < 0), t là thời gian phân hủy, S là lượng còn lại sau thời gian phân hủy t. Hỏi 10 gam \(P{u^{239}}\) sau bao nhiêu năm phân hủy sẽ còn 1 gam?

Lời giải chi tiết

- Tính tỉ lệ phân hủy:

Ta có:

\(\begin{array}{l}\frac{1}{2}A = A.{e^{r.24360}}\\ \Leftrightarrow \frac{1}{2} = {e^{r.24360}}\\ \Leftrightarrow r.24360 = \ln \frac{1}{2} =  - \ln 2\\ \Leftrightarrow r =  - \frac{{\ln 2}}{{24360}} \approx  - 0,000028\\ \Rightarrow S = A{e^{ - 0,000028t}}\end{array}\)

- Tính thời gian phân hủy chất đó từ 10 gam chỉ còn 1 gam:

Thay \(A = 10,S = 1\) vào công thức trên ta được:

\(\begin{array}{l}1 = 10.{e^{ - 0,000028t}}\\ \Leftrightarrow \frac{1}{{10}} = {e^{ - 0,000028t}}\\ \Leftrightarrow  - 0,000028t = \ln \frac{1}{{10}} =  - \ln 10\\ \Leftrightarrow t = \frac{{ - \ln 10}}{{ - 0,000028}}\\ \Leftrightarrow t \approx 82235\end{array}\)

Vậy sau khoảng 82235 năm thì 10 gam chất \(P{u^{239}}\) sẽ phân hủy còn 1 gam.

Loigiaihay.com


Bình chọn:
3.7 trên 6 phiếu

Các bài liên quan: - Bài 4. Số e và loogarit tự nhiên

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.


Hỏi bài