Bài 40 trang 109 SGK Hình học 10 Nâng cao


Đề bài

Chứng minh rằng tích các khoảng cách từ một điểm bất kì thuộc hypebol đến hai đường tiệm cận của nó là một số không đổi.

Phương pháp giải - Xem chi tiết

Các đường tiệm cận của Hypebol \(y =  \pm \frac{b}{a}x\)

Khoảng cách từ điểm \(M\left( {{x_0};{y_0}} \right)\) đến đường thẳng \(Ax + By + C = 0\) là:

\(\frac{{\left| {A{x_0} + B{y_0} + C} \right|}}{{\sqrt {{A^2} + {B^2}} }}\)

Lời giải chi tiết

Giả sử (H) có phương trình chính tắc là: \({{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1\)

Phương trình tiệm cận của (H) là: \({d_1}:y = {b \over a}x \Leftrightarrow bx - ay = 0\)

\({d_2}:y =  - {b \over a}x \Leftrightarrow bx + ay = 0\)

Gọi \(M\left( {{x_0};{y_0}} \right) \in (H)\) ta có: \({{x_0^2} \over {{a^2}}} - {{y_0^2} \over {{b^2}}} = 1 \Leftrightarrow {b^2}x_0^2 - {a^2}y_0^2 = {a^2}{b^2}\)

Ta có: \(d\left( {M,{d_1}} \right).d\left( {M,{d_2}} \right) = {{|b{x_0} - a{y_0}|} \over {\sqrt {{a^2} + {b^2}} }}.{{|b{x_0} + a{y_0}|} \over {\sqrt {{a^2} + {b^2}} }} \)

\(= {{|{b^2}x_0^2 - {a^2}y_0^2|} \over {{a^2} + {b^2}}}\) \( = {{{a^2}{b^2}} \over {{a^2} + {b^2}}}\) không đổi

Loigiaihay.com


Bình chọn:
3.8 trên 11 phiếu

Các bài liên quan: - Bài 6. Đường hypebol

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.