 Giải toán 10, giải bài tập Toán 10 Nâng cao, đầy đủ đại số giải tích và hình học
                                                
                            Giải toán 10, giải bài tập Toán 10 Nâng cao, đầy đủ đại số giải tích và hình học
                         Bài 3: Một số phương trình quy về phương trình bậc nhất..
                                                        Bài 3: Một số phương trình quy về phương trình bậc nhất..
                                                    Bài 29 trang 85 SGK Đại số 10 nâng cao>
Với giá trị của a thì phương trình sau vô nghiệm?
Đề bài
Với giá trị của a thì phương trình sau vô nghiệm?
\({{x + 1} \over {x - a + 1}} = {x \over {x + a + 2}}\)
Phương pháp giải - Xem chi tiết
- Nhân chéo suy ra phương trình hệ quả.
- Biện luận phương trình thu được suy ra điều kiện vô nghiệm.
Chú ý ĐKXĐ của pt đã cho.
Lời giải chi tiết
Điều kiện: x ≠ a – 1 và x ≠ -a – 2
Ta có:
(1) ⇔ (x + 1)(x + a + 2) = x(x – a + 1)
⇔ x2 + (a + 3)x + a + 2 = x2 – (a – 1)x
⇔ 2(a + 1)x = -a – 2 (2)
+ Với a = -1 thì (2) là 0x=-1 (vô lí) nên S = Ø.
+ Với a ≠ -1 thì \((2) \Leftrightarrow x = {{ - a - 2} \over {2(a + 1)}}\)
Phương trình đã cho vô nghiệm
\(\eqalign{
& \Leftrightarrow \left[ \matrix{
x = a - 1 \hfill \cr 
x = - a - 2 \hfill \cr} \right.\cr& \Leftrightarrow \left[ \matrix{
{{ - a - 2} \over {2(a + 1)}} = a - 1 \hfill \cr 
{{ - a - 2} \over {2(a + 1)}} = - a - 2 \hfill \cr} \right. \cr 
& \Leftrightarrow \left[ \matrix{
- a - 2 = 2({a^2} - 1) \hfill \cr 
- (a + 2) = -2(a + 2)(a + 1) \hfill \cr} \right.\cr} \)
\(\begin{array}{l}
 \Leftrightarrow \left[ \begin{array}{l}
 - a - 2 = 2{a^2} - 2\\
a + 2 = 2\left( {a + 2} \right)\left( {a + 1} \right)
\end{array} \right.\\
 \Leftrightarrow \left[ \begin{array}{l}
2{a^2} + a = 0\\
\left( {a + 2} \right)\left( {2a + 2} \right) - \left( {a + 2} \right) = 0
\end{array} \right.\\
 \Leftrightarrow \left[ \begin{array}{l}
a\left( {2a + 1} \right) = 0\\
\left( {a + 2} \right)\left( {2a + 1} \right) = 0
\end{array} \right.\\
 \Leftrightarrow \left[ \begin{array}{l}
a = 0\\
2a + 1 = 0\\
a + 2 = 0
\end{array} \right.\\
 \Leftrightarrow \left[ \begin{array}{l}
a = 0\\
a = - \frac{1}{2}\\
a = - 2
\end{array} \right.
\end{array}\)
Vậy \(a = 0,a = - \frac{1}{2},a = - 2,a = - 1\) thì pt đã cho vô nghiệm.
Loigiaihay.com
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ 
                 
                 
                                     
                                     
        
 
                                            




 
             
            