Bài 27 trang 85 SGK Đại số 10 nâng cao

Bình chọn:
4 trên 10 phiếu

Bằng cách đặt ẩn phụ, giải các phương trình sau:

Lựa chọn câu để xem lời giải nhanh hơn

Bằng cách đặt ẩn phụ, giải các phương trình sau:

LG a

\(4{x^2} - 12x - 5\sqrt {4{x^2} - 12x + 11}  + 15 = 0\)

Giải chi tiết:

\(4{x^2} - 12x - 5\sqrt {4{x^2} - 12x + 11}  + 15 = 0\)

 Đặt \(t = \sqrt {4{x^2} - 12x + 11} \,\,(t \ge 0)\)

⇒ 4x2 – 12x = t2 – 11

Ta có phương trình:

\({t^2} - 11 - 5t + 15 = 0 \Leftrightarrow {t^2} - 5t + 4 = 0\)

\(\Leftrightarrow \left[ \matrix{
t = 1 \hfill \cr 
t = 4 \hfill \cr} \right.\) 

+ Với t = 1, ta có:

\(\sqrt {4{x^2} - 12x + 11}  = 1 \Leftrightarrow 4{x^2} - 12x + 10 = 0\)  (vô nghiệm)

+ Với t = 4, ta có:

\(\eqalign{
& \sqrt {4{x^2} - 12x + 11} = 4 \Leftrightarrow 4{x^2} - 12x - 5 = 0 \cr 
& \Leftrightarrow x = {{6 \pm \sqrt {56} } \over 4} = {{3 \pm \sqrt {14} } \over 2} \cr} \)

LG b

\({x^2}+ 4x – 3|x + 2| + 4 = 0\)

Giải chi tiết:

Đặt \(t = | x + 2|  (t ≥ 0) \)⇒ x2 + 4x = t2 – 4

Ta có phương trình:

\(\eqalign{
& {t^2} - 4 - 3t + 4 = 0 \Leftrightarrow {t^2} - 3t = 0 \cr&\Leftrightarrow \left[ \matrix{
t = 0 \hfill \cr 
t = 3 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
|x + 2| = 0 \hfill \cr 
|x + 2| = 3 \hfill \cr} \right. \cr 
& \Leftrightarrow \left[ \matrix{
x = - 2 \hfill \cr 
x + 2 = 3 \hfill \cr 
x + 2 = - 3 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = - 2 \hfill \cr 
x = 1 \hfill \cr 
x = - 5 \hfill \cr} \right. \cr} \)

Vậy S = {-5, -2, 1}

LG c

\(4{x^2} + {1 \over {{x^2}}} + |2x - {1 \over x}| - 6 = 0\)

Giải chi tiết:

Đặt \(t = |2x - {1 \over x}|\,\,\,(t \ge 0)\)

\( \Rightarrow {t^2} = 4{x^2} + {1 \over {{x^2}}} - 4 \Rightarrow 4{x^2} + {1 \over {{x^2}}} = {t^2} + 4\)

Ta có phương trình:

\({t^2} + t - 2 = 0 \Leftrightarrow \left[ \matrix{
t = 1 \hfill \cr 
t = - 2\,\,(l) \hfill \cr} \right.\)

\(t = 1 \Leftrightarrow \left[ \matrix{
2x - {1 \over x} = 1 \hfill \cr 
2x - {1 \over x} = - 1 \hfill \cr} \right. \)

\(\Leftrightarrow \left[ \matrix{
2{x^2} - x - 1 = 0 \hfill \cr 
2{x^2} + x - 1 = 0 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = 1;\,x = - {1 \over 2} \hfill \cr 
x = - 1;\,x = {1 \over 2} \hfill \cr} \right.\) 

Vậy  \(S = {\rm{\{ }} - 1, - {1 \over 2};{1 \over 2};1\} \)

Loigiaihay.com

>>Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Gửi văn hay nhận ngay phần thưởng