Bài 2 trang 174 SGK Đại số và Giải tích 11

Bình chọn:
4.6 trên 14 phiếu

Giải bài 2 trang 174 SGK Đại số và Giải tích 11. Tìm đạo hàm cấp hai của các hàm số sau:

Đề bài

Tìm đạo hàm cấp hai của các hàm số sau:

a) \(y =  \dfrac{1}{1-x}\);

b) \(y =  \dfrac{1}{\sqrt{1-x}}\);

c) \(y = \tan x\);

d) \(y = \cos^2x\) .

Phương pháp giải - Xem chi tiết

Sử dụng bảng đạo hàm cơ bản, các quy tắc tính đạo hàm để tính đạo hàm cấp 2 của các hàm số.

Lời giải chi tiết

\(\begin{array}{l}
a)\,\,y = \dfrac{1}{{1 - x}}\\
\Rightarrow y' = - \dfrac{{ - 1}}{{{{\left( {1 - x} \right)}^2}}} = \dfrac{1}{{{{\left( {1 - x} \right)}^2}}}\\
\Rightarrow y'' = - \dfrac{{2\left( {1 - x} \right)\left( { - 1} \right)}}{{{{\left( {1 - x} \right)}^4}}} = \dfrac{2}{{{{\left( {1 - x} \right)}^3}}}\\
b)\,\,y = \dfrac{1}{{\sqrt {1 - x} }}\\
\Rightarrow y' = - \dfrac{{\dfrac{{ - 1}}{{2\sqrt {1 - x} }}}}{{1 - x}} = \dfrac{1}{{2{{\left( {\sqrt {1 - x} } \right)}^3}}}\\
\Rightarrow y'' = - \dfrac{{3\left( {1 - x} \right).\dfrac{{ - 1}}{{2\sqrt {1 - x} }}}}{{2{{\left( {\sqrt {1 - x} } \right)}^6}}} = \dfrac{3}{{4{{\left( {\sqrt {1 - x} } \right)}^5}}}\\
c)\,\,y = \tan x\\
\Rightarrow y' = \dfrac{1}{{{{\cos }^2}x}}\\
\Rightarrow y'' = \dfrac{{2\cos x\sin x}}{{{{\cos }^4}x}} = \dfrac{{2\sin x}}{{{{\cos }^3}x}}\\
d)\,\,y = {\cos ^2}x\\
\Rightarrow y' = - 2\cos x\sin x = - \sin 2x\\
\Rightarrow y'' = - 2\cos 2x
\end{array}\)

 Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

Các bài liên quan: - Bài 5. Đạo hàm cấp hai

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu