Bài 17 trang 90 SGK Hình học 10 Nâng cao


Viết phương trình đường thẳng song song và cách đường thẳng (ax + by + c = 0) một khoảng bằng h cho trước.

Đề bài

Viết phương trình đường thẳng song song và cách đường thẳng \(ax + by + c = 0\) một khoảng bằng h cho trước.

Lời giải chi tiết

Gọi \(\Delta :ax + by + c = 0\)

Đường thẳng \(\Delta '\) song song với đường thẳng \(\Delta \) đã cho có dạng:

\(\Delta ':ax + by + c' = 0.\)

Lấy \(M\left( {{x_0};{y_0}} \right) \in \Delta \) ta có:

\(a{x_0} + b{y_0} + c = 0 \Leftrightarrow a{x_0} + b{y_0} =  - c\)

Khoảng cách từ M đến \(\Delta '\) bằng h nên ta có:

\(\eqalign{
& h = {{|a{x_0} + b{y_0} + c'|} \over {\sqrt {{a^2} + {b^2}} }} = {{|c' - c|} \over {\sqrt {{a^2} + {b^2}} }} \cr&\Rightarrow c' - c = \pm h\sqrt {{a^2} + {b^2}} \cr 
& \Rightarrow c' = c \pm h\sqrt {{a^2} + {b^2}} \cr} \) 

Vậy có hai đường thẳng thỏa mãn yêu cầu bài toán

\(ax + by + c + h\sqrt {{a^2} + {b^2}}  = 0;\)

\(ax + by + c - h\sqrt {{a^2} + {b^2}}  = 0.\)

Loigiaihay.com 


Bình chọn:
4.1 trên 8 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí