
Xét vị trí tương đối của mỗi cặp đường thẳng sau đây và tìm tọa độ giao điểm (nếu có) của chúng
LG a
\(\left\{ \matrix{
x = 4 - 2t \hfill \cr
y = 5 - t \hfill \cr} \right.\)
và
\(\left\{ \matrix{
x = 8 + 6{t'} \hfill \cr
y = 4 - 3{t'} \hfill \cr} \right.;\)
Lời giải chi tiết:
LG b
\(\left\{ \matrix{
x = 5 + t \hfill \cr
y = - 3 + 2t \hfill \cr} \right.\)
và \({{x - 4} \over 2} = {{y + 7} \over 3};\)
Lời giải chi tiết:
+) Xét đường thẳng \(\left\{ \begin{array}{l}x = 5 + t\\y = - 3 + 2t\end{array} \right.\) đi qua A(5;-3) và nhận \(\overrightarrow {{u_1}} = \left( {1;2} \right)\) làm VTCP nên có VTPT \(\overrightarrow {{n_1}} = \left( {2; - 1} \right)\)
PTTQ: \(2\left( {x - 5} \right) - 1\left( {y + 3} \right) = 0\) hay \(2x - y - 13 = 0\)
+) Xét đường thẳng \(\dfrac{{x - 4}}{2} = \dfrac{{y + 7}}{3}\) đi qua B(4;-7) và nhận \(\overrightarrow {{u_2}} = \left( {2;3} \right)\) làm VTCP nên có VTPT \(\overrightarrow {{n_2}} = \left( {3; - 2} \right)\)
PTTQ: \(3\left( {x - 4} \right) - 2\left( {y + 7} \right) = 0\) hay \(3x - 2y - 26 = 0\)
Vì \(\dfrac{2}{3} \ne \dfrac{{ - 1}}{{ - 2}}\) nên hai đt cắt nhau.
Tọa độ giao điểm của hai đường thẳng là nghiệm của hệ sau:
\(\left\{ \matrix{
2x - y - 13 = 0 \hfill \cr
3x - 2y - 26 = 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = 0 \hfill \cr
y = - 13 \hfill \cr} \right.\)
Vậy hai đường thẳng cắt nhau tại M(0, -13)
LG c
\(\left\{ \matrix{
x = 5 + t \hfill \cr
y = - 1 - t \hfill \cr} \right.\)
và \(x + y - 4 = 0\)
Lời giải chi tiết:
Xét đường thẳng \(\left\{ \begin{array}{l}x = 5 + t\\y = - 1 - t\end{array} \right.\) đi qua A(5;-1) và nhận \(\overrightarrow u = \left( {1; - 1} \right)\) làm VTCP nên có VTPT \(\overrightarrow n = \left( {1;1} \right)\)
PTTQ: \(1\left( {x - 5} \right) + 1\left( {y + 1} \right) = 0\) hay \(x + y - 4 = 0\)
Vì \(\frac{1}{1} = \frac{1}{1} = \frac{{ - 4}}{{ - 4}}\) nên hai đt trùng nhau.
Loigiaihay.com
Các bài liên quan: - Bài 2. Phương trình tham số của đường thẳng