Giải mục 1 trang 25, 26 SGK Toán 7 tập 2 - Kết nối tri thức


Cho biết hệ số và bậc của mỗi đơn thức sau:

Lựa chọn câu để xem lời giải nhanh hơn

1. Đơn thức một biến

Câu hỏi 1

Cho biết hệ số và bậc của mỗi đơn thức sau:

a) 2.x6;             b) \( - \dfrac{1}{5}.{x^2}\)     c) -8;    d) 32x

Phương pháp giải:

Đơn thức có dạng tích của một số thực với một lũy thừa của biến.

Số thực gọi là hệ số

Số mũ của lũy thừa của biến gọi là bậc của đơn thức

Lời giải chi tiết:

a) Hệ số: 2

Bậc: 6

b) Hệ số:\( - \dfrac{1}{5}\)

Bậc: 2

c) Hệ số: -8

Bậc: 0

d) Hệ số: 9 ( vì 32 = 9)

Bậc: 1

Chú ý: Đơn thức chỉ gồm số thực khác 0 có bậc là 0

Câu hỏi 2

Khi nhân một đơn thức bậc 3 với một đơn thức bậc 2, ta được đơn thức bậc mấy?

Phương pháp giải:

Muốn nhân 2 đơn thức, ta nhân hai hệ số với nhau và nhân hai lũy thừa của biến với nhau

\({x^m}.{x^n} = {x^{m + n}}\)

Lời giải chi tiết:

Giả sử hai đơn thức đã cho có biến x

Đơn thức bậc 3 có dạng: a.x3

Đơn thức bậc 2 có dạng: b.x2

Nhân 2 đơn thức trên, ta được đơn thức a.x3.b.x2 = (a.b).(x3.x2) = (a.b).x3+2= (a.b). x5

Vậy ta thu được đơn thức bậc 5.

Luyện tập 1

Tính: \(a)5{x^3} + {x^3};b)\dfrac{7}{4}{x^5} - \dfrac{3}{4}{x^5};c)( - 0,25{x^2}).(8{x^3})\)

Phương pháp giải:

+ Muốn cộng (hay trừ) hai đơn thức cùng bậc, ta cộng (hay trừ) các hệ số với nhau, giữ nguyên lũy thừa của biến.

+ Muốn nhân 2 đơn thức, ta nhân hai hệ số với nhau và nhân hai lũy thừa của biến với nhau

Lời giải chi tiết:

\(\begin{array}{l}a)5{x^3} + {x^3} = (5 + 1){x^3} = 6{x^3}\\b)\dfrac{7}{4}{x^5} - \dfrac{3}{4}{x^5} = \left( {\dfrac{7}{4} - \dfrac{3}{4}} \right){x^5} = \dfrac{4}{4}{x^5} = {x^5}\\c)( - 0,25{x^2}).(8{x^3}) = ( - 0,25.8).({x^2}.{x^3}) =  - 2.{x^5}\end{array}\)


Bình chọn:
4.3 trên 16 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 7 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí