Câu 1 Đề I trang 132 SGK Hình học 12 Nâng cao


Câu 1. Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a va cạnh bên bằng . a) Tính thể tích của hình chóp đã cho. b) Tính bán kính mặt cầu ngoại tiếp hình chóp S.ABCD. c) Gọi A’ và C’ lần lượt là trung điểm của hai cạnh SA và SC. Chứng minh rằng hai hình chóp A’.ABCD và C’.CBAD bằng nhau.

Lựa chọn câu để xem lời giải nhanh hơn

Câu 1. Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a va cạnh bên bằng \(a\sqrt 2 \).

LG a

Tính thể tích của hình chóp đã cho.

Lời giải chi tiết:

Gọi \(O = AC \cap BD \Rightarrow SO \bot \left( {ABCD} \right).\)
Ta có ABCD là hình vuông cạnh a nên \(AC = BD = a\sqrt 2  \Rightarrow AO = {{a\sqrt 2 } \over 2}.\)
Xét tam giác vuông SOA có: \(SO = \sqrt {S{A^2} - O{A^2}}  = \sqrt {2{a^2} - {{{a^2}} \over 2}}  = {{a\sqrt 6 } \over 2}.\)

\(\eqalign{
& {S_{ABCD}} = {a^2} \cr 
& \Rightarrow {V_{S.ABCD}} = {1 \over 3}SO.{S_{ABCD}} = {1 \over 3}{{a\sqrt 6 } \over 2}.{a^2} = {{{a^3}\sqrt 6 } \over 6}. \cr} \)

LG b

Tính bán kính mặt cầu ngoại tiếp hình chóp S.ABCD.

Lời giải chi tiết:

Gọi A’ là trung điểm của SA.
Trong (SAC) qua A’ kẻ đường thẳng vuông góc với SA cắt SO tại I.
Suy ra I là tâm mặt cầu ngoại tiếp chóp S.ABCD.
Dễ thấy 

\(\eqalign{
& \Delta SA'I\,\,\text{ đồng dạng }\,\,\Delta SOA\,(g.g) \cr 
& \Rightarrow {{SA} \over {SI}} = {{SO} \over {SA'}} \Rightarrow SI = {{SA.SA'} \over {SO}} = {{a\sqrt 2 .{{a\sqrt 2 } \over 2}} \over {{{a\sqrt 6 } \over 2}}} = {{a\sqrt 6 } \over 3} = R \cr} \)

LG c

Gọi A’ và C’ lần lượt là trung điểm của hai cạnh SA và SC. Chứng minh rằng hai hình chóp A’.ABCD và C’.CBAD bằng nhau.

Lời giải chi tiết:

Ta có A’C’ // (ABCD) \( \Rightarrow d\left( {A';\left( {ABCD} \right)} \right) = d\left( {C';\left( {ABCD} \right)} \right)\)
\( \Rightarrow {V_{A'.ABCD}} = {V_{C'.CBAD}}.\)
Vậy hai khối chóp A’.ABCD và C’.CBAD bằng nhau.

Loigiaihay.com


Bình chọn:
3.7 trên 3 phiếu
  • Câu 1 Đề II trang 132 SGK Hình học 12 Nâng cao

    Câu 1. Cho tứ diện đều ABCD có cạnh bằng a. Gọi B’, C’, D’ lần lượt là trung điểm của các cạnh AB, AC và AD. a) Chứng minh rằng 6 điểm B, C, D, B’, C’, D’ nằm trên một mặt cầu. Tìm bán kính của mặt cầu đó. b) Tính thể tích khối chóp D.BCC’B’.

  • Câu 1 Đề III trang 133 SGK Hình học 12 Nâng cao

    Câu 1. Cho hình hộp ABCD.A’B’C’D’. Gọi N là điểm nằm trên cạnh AB và là mặt phẳng đi qua ba điểm D, N, B’. a) Mặt phẳng cắt hình hộp đã cho theo thiết diện là hình gì? b) Chứng minh rằng mặt phẳng phân chia khối hộp đã cho thành hai khối đa diện và bằng nhau. c) Tính tỉ số thể tích của khối đa diện và thể tích của khối tứ diện AA’BD.

  • Câu 2 Đề II trang 132 SGK Hình học 12 Nâng cao

    Câu 2. Trong không gian tọa độ Oxyz cho các điểm A(2; 0; 0), A’(6; 0; 0), B(0; 3; 0), B’(0 ;4; 0), C(0; 0; 4), C’(0; 0; 3). a) Viết phương trình mặt cầu đi qua 4 điểm A, A’, B, C. Chứng minh rằng B’ và C’ cũng nằm trên mặt cầu đó. b) Chứng minh rằng trực tâm H của tam giác ABC, trọng tâm G của tam giác A’B’C’ cùng nằm trên một đường thẳng đi qua O. Viết phương trình đường thẳng đó. c) Tính khoảng cách từ điểm O tới giao tuyến của mp(ABC’) và mp(A’B’C).

  • Câu 2 Đề III trang 133 SGK Hình học 12 Nâng cao

    Câu 2. Trong không gian tọa độ Oxyz, cho các điểm A(1; -3; -1) và B(-2; 1; 3). a) Chứng tỏ rằng hai điểm A và B cách đều trục Ox. b) Tìm điểm C nằm trên trục Oz sao cho tam giác ABC vuông tại C. c) Viết phương trình hình chiếu của đường thẳng AB trên mp(Oyz). d) Viết phương trình mặt cầu đi qua ba điểm O, A, B và có tâm nằm trên mp(Oxy).

  • Câu 2 Đề I trang 132 SGK Hình học 12 Nâng cao

    Câu 2. Trong không gian tọa độ Oxyz, cho các điểm A(4; -1; 2), B(1; 2; 2) và C(1; -1; 5). a) Chứng minh rằng ABC là tam giác đều. b) Viết phương trình mp(ABC). Tính thể tích khối tứ diện giới hạn bởi mp(ABC) và các mặt phẳng tọa độ. c) Viết phương trình trục của đường tròn ngoại tiếp tam giác ABC. d) Tìm tọa độ điểm D sao cho ABCD là tứ diện đều.

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí