Bài 7 trang 93 SGK Hình học 10

Bình chọn:
4.3 trên 4 phiếu

Giải bài 7 trang 93 SGK Hình học 10. Cho đường tròn (C) có tâm I(1, 2) và bán kính bằng 3. Chứng minh rằng tập hợp các điểm M từ đó ta sẽ được hai tiếp tuyến với (C) tạo với nhau một góc 600 là một đường tròn.

Đề bài

Cho đường tròn \((C)\) có tâm \(I(1; 2)\) và bán kính bằng \(3\). Chứng minh rằng tập hợp các điểm \(M\) từ đó ta sẽ được hai tiếp tuyến với \((C)\) tạo với nhau một góc \(60^0\) là một đường tròn. Hãy viết phương trình đường tròn đó.

Lời giải chi tiết

 

Theo tính chất của tiếp tuyến ta có: \(\widehat {AMI} = {30^0}\)

\(IM = {{IA} \over {\sin \widehat {AMI}}} = {3 \over {\sin {{30}^0}}} = {3 \over {{1 \over 2}}} = 6\)

Gọi tọa độ của \(M\) là \((x ;y)\) Ta có:

\(O{M^2} = {(x - 1)^2} + {(y - 2)^2} = 36\)

Vậy quỹ tích \(M\) là đường tròn tâm \(I (1; 2)\), bán kính \(R = 6\)

Phương trình đường tròn là: \({(x - 1)^2} + {(y - 2)^2} = 36\)

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 10 - Xem ngay

Các bài liên quan: - Ôn tập chương III - Phương pháp tọa độ trong mặt phẳng

>>Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu