
Đề bài
Cho đường tròn (C) : \(x^2+ y^2– 4x – 2y = 0\) và đường thẳng \(Δ: x + 2y + 1 = 0\)
Trong các mệnh đề sau, tìm mệnh đề đúng:
A. \(Δ\) đi qua tâm \((C)\)
B. \(Δ\) cắt \((C)\) tại hai điểm
C. \(Δ\) tiếp xúc \((C)\)
D. \(Δ\) không có điểm chung với \((C)\)
Video hướng dẫn giải
Lời giải chi tiết
Đường tròn \((C):x^2+ y^2– 4x – 2y = 0 \)\(\Leftrightarrow {\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} = 5\) có tâm \(I(2; 1)\) và bán kính \(R = \sqrt5.\)
Khoảng cách từ tâm \(I\) đến đường thẳng \(Δ: x + 2y + 1 = 0\) là:
\(d\left( {I,\;\Delta } \right) = \frac{{\left| {2 + 2 + 1} \right|}}{{\sqrt 5 }} = \sqrt 5 =R.\)
Do đó \(Δ\) tiếp xúc với \((C).\)
Vậy C đúng.
Loigiaihay.com
Các bài liên quan: - Ôn tập chương III - Phương pháp tọa độ trong mặt phẳng
Các bài khác cùng chuyên mục