Câu 6 trang 91 SGK Hình học 11 Nâng cao


Đề bài

Cho hình chóp S.ABC. Lấy các điểm A’, B’, C’ lần lượt thuộc các tia SA, SB, SC sao cho SA = aSA’, SB = bSB’, SC = cSC’, trong đó a, b, c là các số thay đổi. Chứng minh rằng mặt phẳng (A’B’C’) đi qua trọng tâm của tam giác ABC khi và chỉ khi a + b + c = 3.

Lời giải chi tiết

 

Ta có: \(\overrightarrow {SA}  = a\overrightarrow {SA'} ,\;\overrightarrow {SB}  = b\overrightarrow {SB'} ,\;\overrightarrow {SC}  = c\overrightarrow {SC} .\)

Gọi G là trọng tâm của tam giác ABC thì

\(\eqalign{  & \overrightarrow {SG}  = {1 \over 3}.\left( {\overrightarrow {SA}  + \overrightarrow {SB}  + \overrightarrow {SC} } \right)  \cr  & Vay\,\overrightarrow {SG}  = {a \over 3}\overrightarrow {SA'}  + {b \over 3}\overrightarrow {SB'}  + {c \over 3}\overrightarrow {SC'}  \cr} \)

Mặt phẳng (A’B’C’) đi qua G khi và chỉ khi 4 điểm G, A’, B’, C’ đồng phẳng, nên theo kết quả bài tập 5 (SGK trang 91) , điều đó xảy ra nếu và chỉ nếu \({a \over 3} + {b \over 3} + {c \over 3} = 1\) , tức là: a + b + c = 3.

Loigiaihay.com


Bình chọn:
3.7 trên 7 phiếu

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài