Câu 4 trang 91 SGK Hình học 11 Nâng cao

Bình chọn:
2.8 trên 4 phiếu

Cho hình hộp ABCD.A’B’C’D’. Gọi M và N lần lượt là trung điểm của CD và DD’; G và G’ lần lượt là trọng tâm của các tứ diện A’D’MN và BCC’D’. Chứng minh rằng đường thẳng GG’ và mặt phẳng (ABB’A’) song song với nhau.

Cho hình hộp ABCD.A’B’C’D’. Gọi M và N lần lượt là trung điểm của CD và DD’; G và G’ lần lượt là trọng tâm của các tứ diện A’D’MN và BCC’D’. Chứng minh rằng đường thẳng GG’ và mặt phẳng (ABB’A’) song song với nhau.

Giải

Đặt \(\overrightarrow {AB}  = \overrightarrow a ,\overrightarrow {AD}  = \overrightarrow b ,\overrightarrow {AA'}  = \overrightarrow c .\)

Vì G’ là trọng tâm tứ diện BCC’D’ nên \(\overrightarrow {AG'}  = {1 \over 4}\left( {\overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AC'}  + \overrightarrow {AD'} } \right)\)

Và G là trọng tâm tứ diện A’D’MN nên

\(\eqalign{  & \overrightarrow {AG}  = {1 \over 4}\left( {\overrightarrow {AA'}  + \overrightarrow {AD'}  + \overrightarrow {AM}  + \overrightarrow {AN} } \right)  \cr  &  \Rightarrow \overrightarrow {GG'}  = \overrightarrow {AG'}  - \overrightarrow {AG} \cr& = {1 \over 4}\left( {\overrightarrow {A'B}  + \overrightarrow {D'C}  + \overrightarrow {MC'}  + \overrightarrow {ND'} } \right)  \cr  &  = {1 \over 4}\left( {\overrightarrow a  - \overrightarrow c  + \overrightarrow a  - \overrightarrow c  + {1 \over 2}\overrightarrow a  + \overrightarrow c  + {1 \over 2}\overrightarrow c } \right)  \cr  &  = {1 \over 8}\left( {5\overrightarrow a  - \overrightarrow c } \right) = {1 \over 8}\left( {5\overrightarrow {AB}  - \overrightarrow {AA'} } \right) \cr} \)

Do đó \(\overrightarrow {AB} ,\overrightarrow {AA'} ,\overrightarrow {GG'} \) đồng phẳng. Mặt khác, G không thuộc mặt phẳng (ABB’A’) nên đường thẳng GG’ và mặt phẳng (ABB’A’) song song với nhau.

loigiaihay.com

>>Học trực tuyến các môn lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan