 Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
                                                
                            Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
                         Câu hỏi và bài tập ôn tập chương II
                                                        Câu hỏi và bài tập ôn tập chương II
                                                    Câu 56 trang 93 SGK Đại số và Giải tích 11 Nâng cao>
Từ các chữ số 0, 1, 2, 3, 4, 5 có thể lập nên bao nhiêu số chẵn có ba chữ số khác nhau ?
Đề bài
Từ các chữ số \( 1, 2, 3, 4, 5\) có thể lập nên bao nhiêu số chẵn có ba chữ số khác nhau?
Phương pháp giải - Xem chi tiết
- Đếm số cách chọn các chữ số hàng đơn vị, trăm, chục.
- Sử dụng quy tắc nhân suy ra đáp số.
Lời giải chi tiết
Để lập số chẵn có 3 chữ số \(\overline {abc} \), đầu tiên ta lấy chữ số c trong tập \(\{2, 4\}\). Có hai cách chọn chữ số c.
Sau đó ta chọn chữ số b trong tập \(\{1, 2, 3, 4, 5\}\). Có 4 cách chọn chữ số b.
Cuối cùng, ta chọn số a trong tập \(\{1, 2, 3, 4, 5\} \backslash \{c, b\}\). Có 3 cách chọn chữ số a.
Vậy theo qui tắc nhân, ta có \(2.4.3 = 24\) số chẵn thỏa mãn điều kiện đầu bài.
Loigiaihay.com
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ 
                 
                 
                                     
                                     
        
 
                                            




 
             
            