Câu 4.41 trang 109 SBT Đại số 10 Nâng cao


Giải bài tập Câu 4.41 trang 109 SBT Đại số 10 Nâng cao.

Lựa chọn câu để xem lời giải nhanh hơn

Xét dấu của các biểu thức sau bằng cách lập bảng :

 

LG a

\(\left( {3{x} - 1} \right)\left( {{x} + 2} \right)\)

 

Lời giải chi tiết:

\(\left( {3{x} - 1} \right)\left( {{x} + 2} \right) > 0\) khi \(x <  - 2\) hoặc \(x > \dfrac{1}{3};\)

\(\left( {3{x} - 1} \right)\left( {{x} + 2} \right) < 0\) khi \( - 2 < x < \dfrac{1}{3}\).

 

LG b

 \(\dfrac{{2 - 3{x}}}{{5{x} - 1}}\)

 

Lời giải chi tiết:

\({{2 - 3x} \over {5x - 1}} > 0\) khi \({1 \over 5} < x < {2 \over 3}\)

\({{2 - 3x} \over {5x - 1}} < 0\) khi \(x < {1 \over 5}\) hoặc \(x > {2 \over 3}.\)

 

LG c

\(\left( { - x + 1} \right)\left( {{x} + 2} \right)\left( {3{x} + 1} \right)\)

 

Lời giải chi tiết:

Lập bảng sau :

Vậy

\(\left( { - x + 1} \right)\left( {{x} + 2} \right)\left( {3{x} + 1} \right) < 0\) khi \( - 2 < x <  - {1 \over 3}\) hoặc \(x > 1;\)

 

LG d

\(2 - \dfrac{{2 + {x}}}{{3{x} - 2}}\)

 

Lời giải chi tiết:

Ta có: \(2 - \dfrac{{2 + {x}}}{{3{x} - 2}} = \dfrac{{5{x} - 6}}{{3{x} - 2}}.\) Lập bảng sau :

Vậy

\(2 - {{2 + x} \over {3x - 2}} < 0\) khi \({2 \over 3} < x < {6 \over 5}\)

\(2 - {{2 + x} \over {3x - 2}} > 0\) khi \(x < {2 \over 3}\) hoặc \(x > {6 \over 5}.\)

Loigiaihay.com

 

Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí