Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
Bài 7. Các dạng vô định
Câu 40 trang 166 SGK Đại số và Giải tích 11 Nâng cao>
Tìm các giới hạn sau :
Tìm các giới hạn sau :
LG a
\(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} \left( {{x^3} + 1} \right)\sqrt {{x \over {{x^2} - 1}}} \)
Lời giải chi tiết:
Dạng 0.∞
Với \(x > -1\) đủ gần -1 (\(-1 < x < 0\)) ta có :
\(\eqalign{
& \left( {{x^3} + 1} \right)\sqrt {{x \over {{x^2} - 1}}} \cr &= \left( {{x^2} - x + 1} \right)\left( {x + 1} \right).\sqrt {{x \over {{x^2} - 1}}} \cr
& = \left( {{x^2} - x + 1} \right).\sqrt {\frac{{x{{\left( {x + 1} \right)}^2}}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}} \cr &= \left( {{x^2} - x + 1} \right)\sqrt {{{x\left( {x + 1} \right)} \over {x - 1}}} \cr
& \Rightarrow \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} \left( {{x^3} + 1} \right)\sqrt {{x \over {{x^2} - 1}}}\cr & = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} \left( {{x^2} - x + 1} \right)\sqrt {{{x\left( {x + 1} \right)} \over {x - 1}}} = 0 \cr} \)
LG b
Phương pháp giải:
Đưa x+2 vào trong căn, chia cả tử và mẫu cho lũy thừa bậc cao nhất của x.
Lời giải chi tiết:
Dạng 0.∞
\(\eqalign{
& \mathop {\lim }\limits_{x \to + \infty } \left( {x + 2} \right)\sqrt {{{x - 1} \over {{x^3} + x}}} \cr &= \mathop {\lim }\limits_{x \to + \infty } \sqrt {{{{{\left( {x + 2} \right)}^2}\left( {x - 1} \right)} \over {{x^3} + x}}} \cr
&= \mathop {\lim }\limits_{x \to + \infty } \sqrt {\frac{{\frac{{{{\left( {x + 2} \right)}^2}}}{{{x^2}}}.\frac{{x - 1}}{x}}}{{\frac{{{x^3} + x}}{{{x^3}}}}}} \cr &= \mathop {\lim }\limits_{x \to + \infty } \sqrt {{{{{\left( {1 + {2 \over x}} \right)}^2}\left( {1 - {1 \over x}} \right)} \over {1 + {1 \over {{x^2}}}}}} = 1 \cr} \)
Loigiaihay.com




