Câu 33 trang 159 SGK Đại số và Giải tích 11 Nâng cao


Đề bài

Cho hàm số

\(f\left( x \right) = \left\{ {\matrix{{{x^2} - 2x + 3\,\text{ với }\,x \le 2.} \cr {4x - 3\,\text{ với }\,x > 2} \cr} } \right.\)

Tìm \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right),\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right)\,\text{ và }\,\mathop {\lim }\limits_{x \to 2} f\left( x \right)\) (nếu có).

Lời giải chi tiết

Ta có:

\(\eqalign{
& \mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {4x - 3} \right) =4.2-3= 5 \cr 
& \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {{x^2} - 2x + 3} \right) =2^2-2.2+3= 3 \cr} \)

Vì \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right)\) nên không tồn tại  \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\)

Loigiaihay.com


Bình chọn:
4.2 trên 9 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

>> Luyện thi TN THPT & ĐH năm 2023 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.