 Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
                                                
                            Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
                         Bài 5. Giới hạn một bên
                                                        Bài 5. Giới hạn một bên
                                                    Câu 29 trang 159 SGK Đại số và Giải tích 11 Nâng cao>
Cho hàm số
Đề bài
Cho hàm số
\(f\left( x \right) = \left\{ {\matrix{{2\left| x \right| - 1\,\text{ với }\,x \le - 2,} \cr {\sqrt {2{x^2} + 1} \,\text{ với }\,x > - 2.} \cr} } \right.\)
Tìm \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} f\left( x \right),\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} f\left( x \right)\) \(\text{ và }\,\mathop {\lim }\limits_{x \to - 2} f\left( x \right)\) (nếu có).
Phương pháp giải - Xem chi tiết
Tìm hàm số ứng với điều kiện của x, từ đó tính giới hạn.
Chú ý:
\(x \to x_0^ + \) nghĩa là \(x \to x_0 \) và \(x > x_0 \).
\(x \to x_0^ - \) nghĩa là \(x \to x_0 \) và \(x < x_0 \).
Lời giải chi tiết
Ta có:
\(\eqalign{
& \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} f\left( x \right)= \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} \left( {2\left| x \right| - 1} \right)  \cr &= 2\left| { - 2} \right| - 1 = 3 \cr 
& \mathop {\lim f(x)}\limits_{x \to {{\left( { - 2} \right)}^ + }} = \mathop {\lim  }\limits_{x \to {{\left( { - 2} \right)}^ + }} \sqrt {2{x^2} + 1} = 3 \cr & \text{Vì }\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} f\left( x \right)=\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} f\left( x \right)=3\cr &\Rightarrow \mathop {\lim }\limits_{x \to - 2} f\left( x \right) = 3. \cr} \)
Loigiaihay.com
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ 
                 
                 
                                     
                                     
        
 
                                            




 
             
            