

Câu 26 trang 158 SGK Đại số và Giải tích 11 Nâng cao>
Áp dụng định nghĩa giới hạn
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
Áp dụng định nghĩa giới hạn bên phải và giới hạn bên trái của hàm số, tìm các giới hạn sau :
LG a
\(\mathop {\lim }\limits_{x \to {1^ + }} \sqrt {x - 1} \)
Phương pháp giải:
Giới hạn phải
Giả sử hàm số \({\rm{f}}\) xác định định trên khoảng \(\left( {{x_o};b} \right)\). Ta nói rằng hàm số \({\rm{f}}\) có giới hạn bên phải là số thực \(L\) khi \(x\) tiến về \({x_o}\) nếu mọi dãy \(\left( {{x_n}} \right)\) trong khoảng \(\left( {{x_o};b} \right)\) mà \(\lim{\rm{ }}{x_n} = {x_o}\) ta đều có \(\lim{\rm{ (f(}}{x_n})) = L\).
Khi đó, ta viết: \(\mathop {\lim}\limits_{x \to x_o^ + } {\rm{f}}\left( x \right) = L\) hoặc \({\rm{f}}\left( x \right) \to L\) khi \(x \to x_o^ + \).
Giới hạn trái
Giả sử hàm số \({\rm{f}}\) xác định định trên khoảng \(\left( {a;{x_o}} \right)\). Ta nói rằng hàm số \({\rm{f}}\) có giới hạn bên trái là số thực \(L\) khi \(x\) tiến về \({x_o}\) nếu mọi dãy \(\left( {{x_n}} \right)\) trong khoảng \(\left( {a;{x_o}} \right)\) mà \(\lim{\rm{ }}{x_n} = {x_o}\) ta đều có \(\lim{\rm{ (f(}}{x_n})) = L\).
Khi đó, ta viết: \(\mathop {\lim}\limits_{x \to x_o^ - } {\rm{f}}\left( x \right) = L\) hoặc \({\rm{f}}\left( x \right) \to L\) khi \(x \to x_o^ - \).
Lời giải chi tiết:
TXĐ: \(D = \left[ {1; + \infty } \right)\)
Với mỗi dãy \(\left( {{x_n}} \right) \subset \left( {1; + \infty } \right)\) mà \(\lim {x_n} = 1\) ta có:
\(\lim f\left( {{x_n}} \right) = \lim \sqrt {{x_n} - 1} \)\( = \sqrt {1 - 1} = 0\) nên \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = 0\).
LG b
\(\mathop {\lim }\limits_{x \to {5^ - }} \left( {\sqrt {5 - x} + 2x} \right)\)
Lời giải chi tiết:
TXĐ: \(D = \left( { - \infty ;5} \right]\)
Với mỗi dãy \(\left( {{x_n}} \right) \subset \left( { - \infty ;5} \right)\) mà \(\lim {x_n} = 5\) ta có:
\(\lim f\left( {{x_n}} \right) = \lim \left( {\sqrt {5 - {x_n}} + 2{x_n}} \right)\)\( = \sqrt {5 - 5} + 2.5 = 10\) nên \(\mathop {\lim }\limits_{x \to {5^ - }} f\left( x \right) = 10\).
LG c
\(\mathop {\lim }\limits_{x \to {3^ + }} {1 \over {x - 3}}\)
Lời giải chi tiết:
TXĐ: \(D = \mathbb{R}\backslash \left\{ 3 \right\}\)
Với mỗi dãy \(\left( {{x_n}} \right) \subset \left( {3; + \infty } \right)\) mà \(\lim {x_n} = 3\) ta có:
\(\lim f\left( {{x_n}} \right) = \lim \dfrac{1}{{{x_n} - 3}} = + \infty \) vì \(\lim 1 = 1 > 0\) và \(\left\{ \begin{array}{l}\lim \left( {{x_n} - 3} \right) = 0\\{x_n} > 3 \Rightarrow {x_n} - 3 > 0\end{array} \right.\)
Vậy \(\mathop {\lim }\limits_{x \to {3^ + }} \dfrac{1}{{x - 3}} = + \infty \)
LG d
\(\mathop {\lim }\limits_{x \to {3^ - }} {1 \over {x - 3}}\)
Lời giải chi tiết:
TXĐ: \(D = \mathbb{R}\backslash \left\{ 3 \right\}\)
Với mỗi dãy \(\left( {{x_n}} \right) \subset \left( { - \infty ;3} \right)\) mà \(\lim {x_n} = 3\) ta có:
\(\lim f\left( {{x_n}} \right) = \lim \dfrac{1}{{{x_n} - 3}} = - \infty \) vì \(\lim 1 = 1 > 0\) và \(\left\{ \begin{array}{l}\lim \left( {{x_n} - 3} \right) = 0\\{x_n} < 3 \Rightarrow {x_n} - 3 < 0\end{array} \right.\)
Vậy \(\mathop {\lim }\limits_{x \to {3^ - }} \dfrac{1}{{x - 3}} = - \infty \)
Loigiaihay.com


- Câu 27 trang 158 SGK Đại số và Giải tích 11 Nâng cao
- Câu 28 trang 158 SGK Đại số và Giải tích 11 Nâng cao
- Câu 29 trang 159 SGK Đại số và Giải tích 11 Nâng cao
- Câu 30 trang 159 SGK Đại số và Giải tích 11 Nâng cao
- Câu 31 trang 159 SGK Đại số và Giải tích 11 Nâng cao
>> Xem thêm