 Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
                                                
                            Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
                         Bài 5. Giới hạn một bên
                                                        Bài 5. Giới hạn một bên
                                                    Câu 28 trang 158 SGK Đại số và Giải tích 11 Nâng cao>
Tìm các giới hạn sau :
Tìm các giới hạn sau :
LG a
\(\displaystyle \mathop {\lim }\limits_{x \to {0^ + }} {{x + 2\sqrt x } \over {x - \sqrt x }}\)
Phương pháp giải:
Phân tích từ và mẫu thành các nhân tử, rút gọn khử dạng vô định và tính giới hạn.
Giải chi tiết:
Với \(\displaystyle x > 0\), ta có : \(\displaystyle {{x + 2\sqrt x } \over {x - \sqrt x }} = {{\sqrt x \left( \sqrt x + 2 \right)} \over {\sqrt x \left( {\sqrt x - 1} \right)}} = {{\sqrt x + 2} \over {\sqrt x - 1}}\)
Do đó: \(\displaystyle \mathop {\lim }\limits_{x \to {0^ + }} {{x + 2\sqrt x } \over {x - \sqrt x }} = \mathop {\lim }\limits_{x \to {0^ + }} {{\sqrt x + 2} \over {\sqrt x - 1}} \) \(\displaystyle = {2 \over { - 1}} = - 2\)
LG b
\(\displaystyle \mathop {\lim }\limits_{x \to {2^ - }} {{4 - {x^2}} \over {\sqrt {2 - x} }}\)
Phương pháp giải:
Phân tích từ và mẫu thành các nhân tử, rút gọn khử dạng vô định và tính giới hạn.
Giải chi tiết:
Với \(\displaystyle x < 2\), ta có: \(\displaystyle {{4 - {x^2}} \over {\sqrt {2 - x} }} = {{\left( {2 - x} \right)\left( {2 + x} \right)} \over {\sqrt {2 - x} }} \) \(\displaystyle = \left( {x + 2} \right)\sqrt {2 - x} \)
Do đó \(\displaystyle \mathop {\lim }\limits_{x \to {2^ - }} {{4 - {x^2}} \over {\sqrt {2 - x} }} \) \(\displaystyle = \mathop {\lim }\limits_{x \to {2^ - }} \left( {x + 2} \right)\sqrt {2 - x} = 0\)
LG c
\(\displaystyle \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} {{{x^2} + 3x + 2} \over {\sqrt {{x^5} + {x^4}} }}\)
Phương pháp giải:
Phân tích từ và mẫu thành các nhân tử, rút gọn khử dạng vô định và tính giới hạn.
Giải chi tiết:
Với mọi \(\displaystyle x > -1\)
\(\displaystyle {{{x^2} + 3x + 2} \over {\sqrt {{x^5} + {x^4}} }} = {{\left( {x + 1} \right)\left( {x + 2} \right)} \over {{x^2}\sqrt {x + 1} }} \) \(\displaystyle = {{\sqrt {x + 1} \left( {x + 2} \right)} \over {{x^2}}}\)
Do đó \(\displaystyle \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} {{{x^2} + 3x + 2} \over {\sqrt {{x^5} + {x^4}} }}\) \(\displaystyle = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} {{\sqrt {x + 1} \left( {x + 2} \right)} \over {{x^2}}} = 0\)
LG d
\(\displaystyle \mathop {\lim }\limits_{x \to {3^ - }} {{\sqrt {{x^2} - 7x + 12} } \over {\sqrt {9 - {x^2}} }}\)
Phương pháp giải:
Phân tích từ và mẫu thành các nhân tử, rút gọn khử dạng vô định và tính giới hạn.
Giải chi tiết:
Với \(\displaystyle -3 < x < 3\)
\(\displaystyle {{\sqrt {{x^2} - 7x + 12} } \over {\sqrt {9 - {x^2}} }} = {{\sqrt {\left( {3 - x} \right)\left( {4 - x} \right)} } \over {\sqrt {\left( {3 - x} \right)\left( {3 + x} \right)} }}\) \(\displaystyle = {{\sqrt {4 - x} } \over {\sqrt {3 + x} }}\)
Do đó \(\displaystyle \mathop {\lim }\limits_{x \to {3^ - }} {{\sqrt {{x^2} - 7x + 12} } \over {\sqrt {9 - {x^2}} }} = {1 \over {\sqrt 6 }} = {{\sqrt 6 } \over 6}\)
Loigiaihay.com
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ 
                 
                 
                                     
                                     
        
 
                                            




 
             
            