Bài 3 trang 93 SGK Hình học 10>
Tìm tập hợp các điểm cách đều hai đường thẳng:
Đề bài
Tìm tập hợp các điểm cách đều hai đường thẳng: \({\Delta _1} : 5x + 3y – 3 = 0\) và \({\Delta _2}: 5x + 3y + 7 = 0.\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Sử dụng công thức tính khoảng cách từ điểm đến đường thẳng \(d\left( {M,\Delta } \right) = \frac{{\left| {a{x_0} + b{y_0} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\)
Lời giải chi tiết
Gọi \(M(x; y)\) là một điểm bất kì trong mặt phẳng, ta có:
\(d(M,{\Delta _1}) = {{|5x + 3y - 3|} \over {\sqrt {{5^2} + {3^2}} }} = {{|5x + 3y - 3|} \over {\sqrt {34} }}\)
\(d(M,{\Delta _2}) = {{|5x + 3y + 7|} \over {\sqrt {{5^2} + {3^2}} }} = {{|5x + 3y + 7|} \over {\sqrt {34} }}\)
Điểm \(M\) cách đều hai đường thẳng \({\Delta _1},{\Delta _2}\) nên:
\(\eqalign{
& {{|5x + 3y - 3|} \over {\sqrt {34} }} = {{|5x + 3y + 7|} \over {\sqrt {34} }} \cr
& \Leftrightarrow |5x + 3y - 3| = |5x + 3y + 7| \cr} \)
Ta xét hai trường hợp:
(*) \(5x + 3y – 3 = - (5x + 3y + 7)\)
\(\begin{array}{l}
\Leftrightarrow 5x + 3y - 3 = - 5x - 3y - 7\\
\Leftrightarrow 10x + 6y + 4 = 0\\
\Leftrightarrow 5x + 3y + 2 = 0
\end{array}\)
(**) \(5x + 3y – 3 = 5x + 3y + 7\)
\( \Leftrightarrow 0x + 0y - 10 = 0\) (vô nghiệm)
Vậy tập hợp các điểm \(M\) cách đều hai đường thẳng \({\Delta _1},{\Delta _2}\) là đường thẳng \(Δ: 5x + 3y + 2 = 0\)
Dễ thấy \(Δ\) song song với \({\Delta _1},{\Delta _2}\) và hai đường thẳng \({\Delta _1},{\Delta _2}\) nằm về hai phía đối với \(Δ\).
Loigiaihay.com
- Bài 4 trang 93 SGK Hình học 10
- Bài 5 trang 93 SGK Hình học 10
- Bài 6 trang 93 SGK Hình học 10
- Bài 7 trang 93 SGK Hình học 10
- Bài 8 trang 93 SGK Hình học 10
>> Xem thêm