Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
Bài 5. Giới hạn một bên
Câu 27 trang 158 SGK Đại số và Giải tích 11 Nâng cao>
Tìm các giới hạn sau (nếu có) :
Tìm các giới hạn sau (nếu có) :
LG a
\(\mathop {\lim }\limits_{x \to {2^ + }} {{\left| {x - 2} \right|} \over {x - 2}}\)
Phương pháp giải:
Phá dấu giá trị tuyệt đối dựa vào điều kiện của x.
Chú ý: \(x \to x_0^ + \) nghĩa là \(x \to x_0 \) và \(x > x_0 \).
\(x \to x_0^ - \) nghĩa là \(x \to x_0 \) và \(x < x_0 \).
\(\left| x \right| = \left\{ \begin{array}{l}
x\,\,\,\,neu\,x \ge 0\\
- x\,neu\,x < 0
\end{array} \right.\)
Lời giải chi tiết:
Với mọi \(x > 2\), ta có x-2>0 nên \(\left| {x - 2} \right| = x - 2.\) Do đó :
\(\mathop {\lim }\limits_{x \to {2^ + }} {{\left| {x - 2} \right|} \over {x - 2}} = \mathop {\lim }\limits_{x \to {2^ + }} {{x - 2} \over {x - 2}} = \mathop {\lim }\limits_{x \to {2^ + }} 1 = 1\)
LG b
\(\mathop {\lim }\limits_{x \to {2^ - }} {{\left| {x - 2} \right|} \over {x - 2}}\)
Lời giải chi tiết:
Với mọi \(x < 2\), ta có x-2<0 nên \(|x – 2| = 2 – x\). Do đó :
\(\mathop {\lim }\limits_{x \to {2^ - }} {{\left| {x - 2} \right|} \over {x - 2}} = \mathop {\lim }\limits_{x \to {2^ - }} {{2 - x} \over {x - 2}} \) \(= \mathop {\lim }\limits_{x \to {2^ - }} - 1 = - 1\)
LG c
\(\mathop {\lim }\limits_{x \to 2} {{\left| {x - 2} \right|} \over {x - 2}}\)
Phương pháp giải:
Điều kiện tồn tại giới hạn:
Hàm số y=f(x) tồn tại giới hạn hữu hạn \(L\) tại \(x_0\) nếu \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = \mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)=L\)
Lời giải chi tiết:
Vì \(\mathop {\lim }\limits_{x \to {2^ + }} {{\left| {x - 2} \right|} \over {x - 2}} \ne \mathop {\lim }\limits_{x \to {2^ - }} {{\left| {x - 2} \right|} \over {x - 2}}\) nên không tồn tại \(\mathop {\lim }\limits_{x \to 2} {{\left| {x - 2} \right|} \over {x - 2}}\)
Loigiaihay.com




