Câu 23 trang 116 SGK Đại số 10 nâng cao


Trong các bất phương trình sau, bất phương trình nào tương đương với bất phương trình

Đề bài

Trong các bất phương trình sau, bất phương trình nào tương đương với bất phương trình \(2x - 1 ≥ 0\).

\(2x - 1 + {1 \over {x - 3}} \ge {1 \over {x - 3}}\) và \(2x - 1 - {1 \over {x + 3}} \ge  - {1 \over {x + 3}}\)

Phương pháp giải - Xem chi tiết

Giải các bất phương trình suy ra kết luận.

Hai bất phương trình tương đương nếu chúng có cùng tập nghiệm.

Lời giải chi tiết

Ta có: \(2x - 1 \ge 0 \Leftrightarrow 2x \ge 1 \Leftrightarrow x \ge \frac{1}{2}\)

Do đó, tập nghiệm của bpt \(2x - 1 \ge 0\) là \(S = {\rm{[}}{1 \over 2}; + \infty )\).

Xét bpt \(2x - 1 + {1 \over {x - 3}} \ge {1 \over {x - 3}}\).

ĐK: \(x\ne 3\).

Ta có: \(2x - 1 + \frac{1}{{x - 3}} \ge \frac{1}{{x - 3}}\) \( \Rightarrow 2x - 1 \ge 0 \Leftrightarrow x \ge \frac{1}{2}\)

Kết hợp \(x\ne 3\) ta được tập nghiệm của bpt là \(S_1 = {\rm{[}}{1 \over 2}; + \infty )\)\(\backslash \left\{ 3 \right\}\)

Dễ thấy \(S_1\) khác S nên hai bpt không tương đương.

Xét bpt \(2x - 1 - {1 \over {x + 3}} \ge  - {1 \over {x + 3}}\).

ĐK: \(x\ne -3\)

Ta có: \(2x - 1 - \frac{1}{{x + 3}} \ge  - \frac{1}{{x + 3}}\) \( \Rightarrow 2x - 1 \ge 0 \Leftrightarrow x \ge \frac{1}{2}\)

Kết hợp điều kiện \(x\ne -3\) ta được \(S_3 = {\rm{[}}{1 \over 2}; + \infty )=S\)

Vậy \(2x - 1 \ge 0 \) \(\Leftrightarrow 2x - 1 - {1 \over {x + 3}} \ge  - {1 \over {x + 3}}\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.8 trên 5 phiếu

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài