Bài 4 trang 80 SGK Hình học 10 nâng cao


Viết phương trình tổng quát của đường thẳng đi qua điểm (A(3;2)) và song song với đường thẳng PQ

Lựa chọn câu để xem lời giải nhanh hơn

Cho hai điểm \(P(4;0),Q(0; - 2)\) .

LG a

Viết phương trình tổng quát của đường thẳng đi qua điểm \(A(3;2)\) và song song với đường thẳng PQ;

Lời giải chi tiết:

Gọi \(\Delta \) là đường thẳng đi qua điểm  \(A(3;2)\) và song song với đường thẳng PQ

\(\overrightarrow {PQ} \left( { - 4; - 2} \right)\)

Gọi \(\overrightarrow n \) là một véc tơ pháp tuyến của đường thẳng PQ do đó: \(\overrightarrow n .\overrightarrow {PQ}  = \overrightarrow 0 \)

Ta chọn \(\overrightarrow n (1; - 2)\)

\(\Delta \) song song với đường thẳng PQ nên véc tơ pháp tuyến của đường thẳng PQ cũng là véc tơ pháp tuyến của \(\Delta \)

Phương trình tổng quát của \(\Delta \) đi qua A(3, 2)  và có véc tơ pháp tuyến  \(\overrightarrow n (1; - 2)\)  là:

\(1.(x - 3) - 2(y - 2) = 0\)\( \Leftrightarrow x - 2y + 1 = 0\)

LG b

Viết phương trình tổng quát của đường trung trực của đoạn thẳng PQ.

Lời giải chi tiết:

Gọi \(I({x_I};{y_I})\) là trung điểm của PQ

Tọa độ điểm I là nghiệm của hệ sau:

\(\left\{ \matrix{
{x_I} = {{{x_P} + {x_Q}} \over 2} \hfill \cr 
{y_I} = {{{y_P} + {y_Q}} \over 2} \hfill \cr} \right.\)\( \Leftrightarrow \left\{ \matrix{
{x_I} = {{4 + 0} \over 2} \hfill \cr 
{y_I} = {{0 + ( - 2)} \over 2} \hfill \cr} \right. \)\(\Leftrightarrow \left\{ \matrix{
{x_I} = 2 \hfill \cr 
{y_I} = - 1 \hfill \cr} \right.\)

Vậy \(I(2; - 1)\)

Gọi d là đường thẳng trung trực của đoạn thẳng PQ

Vì d là đường thẳng trung trực của PQ nên d đi qua trung điểm I của đoạn thẳng PQ và vuông góc với PQ

Phương trình đường thẳng d đi qua I(-2, 1) và nhận \(\overrightarrow {PQ} \left( { - 4; - 2} \right)\) làm véc tơ pháp tuyến là:

\( - 4.(x - 2) - 2.(y + 1) = 0\)\( \Leftrightarrow  - 4x - 2y + 6 = 0\)

\(\Leftrightarrow 2x + y - 3 = 0\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.4 trên 20 phiếu

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài