Bài 4 trang 71 SGK Đại số 10 nâng cao

Bình chọn:
3.5 trên 4 phiếu

Giải các phương trình sau bằng cách bình phương hai vế của phương trình.

Giải các phương trình sau bằng cách bình phương hai vế của phương trình.

a) \(\sqrt {x - 3}  = \sqrt {9 - 2x} \)

b) \(\sqrt {x - 1}  = x - 3\)

c) \(2|x - 1| = x + 2\)

d) \(|x – 2| = 2x – 1\)

Giải

a) Ta có:

\(\eqalign{
& \sqrt {x - 3} = \sqrt {9 - 2x} \Rightarrow x - 3 = 9 - 2x \cr
& \Rightarrow 3x = 12 \Rightarrow x = 4 \cr} \)

Thử lại: \(x = 4\) nghiệm đúng phương trình

Vậy S = {4}

b) Ta có:

\(\eqalign{
& \sqrt {x - 1} = x - 3 \Rightarrow x - 1 = {(x - 3)^2} \cr
& \Rightarrow {x^2} - 7x + 10 = 0 \Rightarrow \left[ \matrix{
x = 2 \hfill \cr
x = 5 \hfill \cr} \right. \cr} \) 

Thử lại: \(x = 2\) không thỏa mãn

             \(x = 5\) thỏa mãn phương trình

Vậy S = {5}

c) Ta có:

\(\eqalign{
& 2|x - 1| = x + 2 \Rightarrow 4{(x - 1)^2} = {(x + 2)^2} \cr
& \Rightarrow 4{x^2} - 8x + 4 = {x^2} + 4x + 4 \Rightarrow 3{x^2} - 12x = 0 \cr
& \Rightarrow \left[ \matrix{
x = 0 \hfill \cr
x = 4 \hfill \cr} \right. \cr} \)

Thử lại: \(x = 0; x = 4\) đều là nghiệm đúng

Vậy S = {0, 4}

d) Ta có:

\(\left| {x{\rm{ }}-{\rm{ }}2} \right|{\rm{ }} = {\rm{ }}2x{\rm{ }}-{\rm{ }}1{\rm{ }} \Rightarrow {\rm{ }}{\left( {x{\rm{ }}-{\rm{ }}2} \right)^2} = {\rm{ }}{\left( {2x{\rm{ }}-{\rm{ }}1} \right)^2}\)

\( \Rightarrow {\rm{ }}{x^2}-{\rm{ }}4x{\rm{ }} + {\rm{ }}4{\rm{ }} = {\rm{ }}4{x^2}-{\rm{ }}4x{\rm{ }} + {\rm{ }}1{\rm{ }} \Rightarrow {\rm{ }}3{x^2} = {\rm{ }}3\)

\(⇒ x = ± 1\)

Thử lại chỉ có \(x = 1\) nghiệm đúng.

Vậy S = {1}

Loigiaihay.com

>>Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan