Bài 4 trang 71 SGK Đại số 10 nâng cao


Giải các phương trình sau bằng cách bình phương hai vế của phương trình.

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình sau bằng cách bình phương hai vế của phương trình.

LG a

\(\sqrt {x - 3}  = \sqrt {9 - 2x} \)

Lời giải chi tiết:

Ta có:

\(\eqalign{
& \sqrt {x - 3} = \sqrt {9 - 2x} \Rightarrow x - 3 = 9 - 2x \cr 
& \Rightarrow 3x = 12 \Rightarrow x = 4 \cr} \)

Thử lại: \(x = 4\) nghiệm đúng phương trình

Vậy S = {4}

LG b

\(\sqrt {x - 1}  = x - 3\)

Lời giải chi tiết:

Ta có:

\(\eqalign{
& \sqrt {x - 1} = x - 3 \Rightarrow x - 1 = {(x - 3)^2} \cr 
& \Rightarrow {x^2} - 7x + 10 = 0 \Rightarrow \left[ \matrix{
x = 2 \hfill \cr 
x = 5 \hfill \cr} \right. \cr} \) 

Thử lại: \(x = 2\) không thỏa mãn

             \(x = 5\) thỏa mãn phương trình

Vậy S = {5}

LG c

\(2|x - 1| = x + 2\)

Lời giải chi tiết:

Ta có:

\(\eqalign{
& 2|x - 1| = x + 2 \Rightarrow 4{(x - 1)^2} = {(x + 2)^2} \cr 
& \Rightarrow 4{x^2} - 8x + 4 = {x^2} + 4x + 4 \Rightarrow 3{x^2} - 12x = 0 \cr 
& \Rightarrow \left[ \matrix{
x = 0 \hfill \cr 
x = 4 \hfill \cr} \right. \cr} \)

Thử lại: \(x = 0; x = 4\) đều là nghiệm đúng

Vậy S = {0, 4}

LG d

\(|x – 2| = 2x – 1\)

Lời giải chi tiết:

Ta có:

\(\left| {x{\rm{ }}-{\rm{ }}2} \right|{\rm{ }} = {\rm{ }}2x{\rm{ }}-{\rm{ }}1{\rm{ }} \Rightarrow {\rm{ }}{\left( {x{\rm{ }}-{\rm{ }}2} \right)^2} = {\rm{ }}{\left( {2x{\rm{ }}-{\rm{ }}1} \right)^2}\)

\( \Rightarrow {\rm{ }}{x^2}-{\rm{ }}4x{\rm{ }} + {\rm{ }}4{\rm{ }} = {\rm{ }}4{x^2}-{\rm{ }}4x{\rm{ }} + {\rm{ }}1{\rm{ }} \Rightarrow {\rm{ }}3{x^2} = {\rm{ }}3\)

\(⇒ x = ± 1\)

Thử lại chỉ có \(x = 1\) nghiệm đúng.

Vậy S = {1}

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.1 trên 17 phiếu

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài