Giải bài 9.22 trang 76 SGK Toán 7 tập 2 - Kết nối tri thức


Đề bài

Cho góc xOy khác góc bẹt. Dùng compa dựng đường tròn tâm O cắt Ox tại A và cắt Oy tại B. Sau đó dựng hai đường tròn tâm A, tâm B có bán kính bằng nhau sao cho chúng cắt nhau tại M nằm nên trong góc xOy. Chứng minh rằng tia OM là tia phân giác của góc xOy.

Phương pháp giải - Xem chi tiết

Xét các tam giác bằng nhau, suy ra cặp góc tương ứng bằng nhau.

Lời giải chi tiết

Ta có: AM = bán kính đường tròn tâm A

BM = bán kính đường tròn tâm B

Mà 2 đường tròn này có bán kính bằng nhau

Do đó, AM = BM

Xét \(\Delta \)OAM và \(\Delta \)ONM có:

OA = OB( = bán kính đường tròn tâm O)

MA = MB

OM chung

\( \Rightarrow \) \(\Delta \)OAM và \(\Delta \)ONM ( c.c.c)

\( \Rightarrow \) \(\widehat {AOM} = \widehat {BOM}\) ( 2 góc tương ứng)

Mà OM nằm giữa 2 tia OA và OB

\( \Rightarrow \) OM là tia phân giác của góc AOB.


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 7 - Kết nối tri thức - Xem ngay

>> Học trực tuyến lớp 7 trên Tuyensinh247.com cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả.