Giải bài 4.58 trang 74 sách bài tập toán 7 - Kết nối tri thức với cuộc sống


Đề bài

Cho đường thẳng d đi qua trung điểm M của đoạn thẳng AB và không vuông góc với AB. Kẻ AP, BQ \(\left( {P \in d,Q \in d} \right)\)vuông góc với đường thẳng d (H 4.60). Chứng minh rằng:

a) AP = BQ

b)\(\Delta APB = \Delta BQA\).

Phương pháp giải - Xem chi tiết

a) Chứng minh: \(\Delta PAM = \Delta QBM\left( {ch - gn} \right)\)

b) Chứng minh theo trường hợp c – g – c.

Lời giải chi tiết

a)

Xét \(\Delta PAM\) và \(\Delta QBM\) có:

AM = BM

\(\widehat {PMA} = \widehat {QMB}\) (2 góc đối đỉnh)

\(\begin{array}{l}\widehat {APM} = \widehat {BQM} = {90^0}\\ \Rightarrow \Delta PAM = \Delta QBM\left( {ch - gn} \right)\end{array}\)

\( \Rightarrow AP = BQ\) (Cạnh tương ứng)

b)

Xét \(\Delta APB\) và \(\Delta BQA\) có:

AP = BQ

\(\widehat {PAB} = \widehat {PAM} = \widehat {QBM} = \widehat {QBA}\left( {\Delta PAM = \Delta QBM} \right)\)

AB: Cạnh chung

\( \Rightarrow \Delta APB = \Delta BQA\left( {c - g - c} \right)\). 


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 7 - Kết nối tri thức - Xem ngay