Giải bài 4.36 trang 65 sách bài tập toán 7 - Kết nối tri thức với cuộc sống


Tổng hợp đề thi giữa kì 2 lớp 7 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - KHTN...

Đề bài

Cho AH và DK lần lượt là hai đường cao của hai tam giác ABC và DEF như Hình 4.38. Biết rằng \(\Delta ABC = \Delta DEF\). Hãy chứng minh AH = DK.

Phương pháp giải - Xem chi tiết

Chứng minh \(\Delta HAB = \Delta KDE\left( {ch - gn} \right)\)

Quảng cáo
decumar

Lời giải chi tiết

Ta có:

\(\begin{array}{l}\Delta ABC = \Delta DEF\\ \Rightarrow \left\{ \begin{array}{l}AB = DE\\\widehat {ABC} = \widehat {DEF} hay \widehat {HBA} = \widehat {KED}\end{array} \right.\end{array}\)

Xét \(\Delta HAB\) và \(\Delta KDE\) có:

\(\widehat {AHB} = \widehat {DKE} = {90^0}\\AB = DE\\\widehat {HBA} = \widehat {KED}\left( {cmt} \right)\\ \Rightarrow \Delta HAB = \Delta KDE\left( {ch - gn} \right)\)

\(\Rightarrow AH = DK\) (2 cạnh tương ứng)


Bình chọn:
4.4 trên 13 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 7 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí