Giải bài 4 trang 119 SGK Toán 7 tập 2 - Cánh diều


Cho hai tam giác ABC và MNP có: AB = MN, BC = NP, CA = PM. Gọi I và K lần lượt là trung điểm của BC và NP. Chứng minh AI = MK.

Tổng hợp đề thi học kì 1 lớp 7 tất cả các môn - Cánh diều

Toán - Văn - Anh - Khoa học tự nhiên...

Đề bài

Cho hai tam giác ABCMNP có: AB = MN, BC = NP, CA = PM. Gọi I K lần lượt là trung điểm của BCNP. Chứng minh AI = MK.

Phương pháp giải - Xem chi tiết

Chứng minh AI = MK bằng cách chứng hai tam giác ABIMNK bằng nhau.

Lời giải chi tiết

Hai tam giác ABCMNP có: AB = MN, BC = NP, CA = PM nên \(\Delta ABC = \Delta MNP\)(c.c.c)

Suy ra: \(\widehat {ABI} = \widehat {MNK}\) ( 2 góc tương ứng).

Ta có: I, K lần lượt là trung điểm của BCNPBC = NP, suy ra: \(BI = NK\).

Xét tam giác ABI và tam giác MNK có:

     AB = MN;

     \(\widehat {ABI} = \widehat {MNK}\);

     BI = NK.

Vậy \(\Delta ABI = \Delta MNK\)(c.g.c). Suy ra: AI = MK (2 cạnh tương ứng).

Vậy AI = MK.


Bình chọn:
4.3 trên 12 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 7 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí