Giải bài 1 trang 96 SGK Toán 7 tập 2 - Cánh diều>
Cho tam giác ABC cân tại A có M là trung điểm cạnh AC và N là trung điểm cạnh AB. Chứng minh
Đề bài
Cho tam giác ABC cân tại A có M là trung điểm cạnh AC và N là trung điểm cạnh AB. Chứng minh \(BM = CN\)
Phương pháp giải - Xem chi tiết
Chứng minh BM = CN bằng cách chứng minh tam giác AMB bằng tam giác ANC .
Lời giải chi tiết
Tam giác ABC cân tại A nên AB = AC.
M và N lần lượt là trung điểm của AC và AB nên:
\(\begin{array}{l}AN = BN = \dfrac{1}{2}AB\\AM = CM = \dfrac{1}{2}AC\end{array}\)
Mà AB = AC nên AN = BN = AM = CM.
Xét tam giác AMB và tam giác ANC có:
\(\widehat A\)chung;
AB = AC (cmt);
AM = AN (cmt).
Vậy \(\Delta AMB = \Delta ANC\)(c.g.c) nên BM = CN ( 2 cạnh tương ứng).
- Giải bài 2 trang 96 SGK Toán 7 tập 2 - Cánh diều
- Giải bài 3 trang 96 SGK Toán 7 tập 2 - Cánh diều
- Giải bài 4 trang 96 SGK Toán 7 tập 2 - Cánh diều
- Giải bài 5 trang 96 SGK Toán 7 tập 2 - Cánh diều
- Giải mục III trang 94, 95 SGK Toán 7 tập 2 - Cánh diều
>> Xem thêm
Các bài khác cùng chuyên mục
- Tạo đồ dùng dạng hình lăng trụ đứng SGK Toán 7 Cánh diều tập 1
- Giải câu hỏi trang 39, 40 SGK Toán 7 Cánh diều tập 2
- Lý thuyết Trường hợp bằng nhau thứ ba của tam giác: góc-cạnh-góc SGK Toán 7 - Cánh diều
- Lý thuyết Trường hợp bằng nhau thứ hai của tam giác: cạnh-góc-cạnh SGK Toán 7 - Cánh diều
- Lý thuyết Trường hợp bằng nhau thứ nhất của tam giác: cạnh-cạnh-cạnh SGK Toán 7 - Cánh diều
- Tạo đồ dùng dạng hình lăng trụ đứng SGK Toán 7 Cánh diều tập 1
- Giải câu hỏi trang 39, 40 SGK Toán 7 Cánh diều tập 2
- Lý thuyết Trường hợp bằng nhau thứ ba của tam giác: góc-cạnh-góc SGK Toán 7 - Cánh diều
- Lý thuyết Trường hợp bằng nhau thứ hai của tam giác: cạnh-góc-cạnh SGK Toán 7 - Cánh diều
- Lý thuyết Trường hợp bằng nhau thứ nhất của tam giác: cạnh-cạnh-cạnh SGK Toán 7 - Cánh diều