Câu hỏi trắc nghiệm chương III


1. Cho ba điểm M(2; 0; 0), N(0; - 3; 0), P(0; 0; 4). Nếu MNPQ là một hình bình hành thì tọa đọ điểm Q là:

Lựa chọn câu để xem lời giải nhanh hơn

Câu 1

Cho ba điểm M(2; 0; 0), N(0; - 3; 0), P(0; 0; 4). Nếu MNPQ là một hình bình hành thì tọa độ điểm Q là:

(A) (-2; -3; 4)                      (B) (3; 4; 2)

(C) (2; 3; 4)                         (D) (-2; -3; -4)

Lời giải chi tiết:

MNPQ là hình bình hành

\( \Leftrightarrow \overrightarrow {MN} = \overrightarrow {QP}\) \( \Leftrightarrow \left\{ \matrix{
0 - 2 = 0 - {x_Q} \hfill \cr 
- 3 - 0 = 0 - {y_Q} \hfill \cr 
0 - 0 = 4 - {z_Q} \hfill \cr} \right. \) \(\Leftrightarrow \left\{ \matrix{
{x_Q} = 2 \hfill \cr 
{y_Q} = 3 \hfill \cr 
{z_Q} = 4 \hfill \cr} \right.\)

Vậy Q(2; 3; 4).

Chọn (C).

Câu 2

Cho ba điểm \(A\left( {1;2;0} \right)\,\,,\,\,B\left( {1;0; - 1} \right)\,\,,\,\,C\left( {0; - 1;2} \right).\) Tam giác ABC là:

(A) Tam giác cân đỉnh A;       

(B) Tam giác vuông đỉnh A;

(C) Tam giác đều;

(D) Không phải như (A), (B), (C).

Lời giải chi tiết:

Ta có 

\(\eqalign{
& AB = \sqrt {{{\left( {1 - 1} \right)}^2} + {{\left( {0 - 2} \right)}^2} + {{\left( {-1 - 0} \right)}^2}} = \sqrt 5 \cr 
& AC = \sqrt {{{\left( {0 - 1} \right)}^2} + {{\left( { - 1 - 2} \right)}^2} + {{\left( {2 - 0} \right)}^2}} = \sqrt {14} \cr 
& BC = \sqrt {{{\left( {0 - 1} \right)}^2} + {{\left( { - 1 - 0} \right)}^2} + {{\left( {2 + 1} \right)}^2}} = \sqrt {11} \cr 
& \Rightarrow A{B^2} + B{C^2} > A{C^2} \cr} \)

\(AC>BC>AB\)

Chọn (D)

Câu 3

Cho tam giác ABC có A=(1;0;1), B=(0;2;3), C(2;1;0). Độ dài đường cao tam giác kẻ từ C là:

(A) \(\sqrt {26} \)          (B) \({{\sqrt {26} } \over 2}\)

(C) \({{\sqrt {26} } \over 3}\)           (D) 26

Lời giải chi tiết:

Ta có: \(\overrightarrow {AB}  = \left( { - 1;2;2} \right),\overrightarrow {AC}  = \left( {1;1; - 1} \right)\)

Khoảng cách từ C đến đường thẳng AB là:  \(h = {{\left| {\left[ {\overrightarrow {AC} ,\overrightarrow {AB} } \right]} \right|} \over {\left| {\overrightarrow {AB} } \right|}} = {{\sqrt {26} } \over 3}.\)

Chọn (C).

Câu 4

Ba đỉnh của một hình bình hành có tọa độ là \(\left( {1;1;1} \right)\,\,;\,\,\left( {2;3;4} \right)\,\,;\,\,\left( {6;5;2} \right).\) Diện tích hình bình hành đó bằng:

(A) \(2\sqrt {83} \)         (B) \(\sqrt {83} \)

(C) 83           (D) \({{\sqrt {83} } \over 2}\)

Lời giải chi tiết:

A(1; 1; 1), B(2; 3; 4), C(6; 5; 2).

\({S_{ABCD}} = 2{S_{ABC}} = \left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]} \right|\) \( = 2\sqrt {83} .\)

Chọn (A).

Câu 5

Cho \(A\left( {1;0;0} \right)\,\,;\,\,B\left( {0;1;0} \right)\,\,;\,\,C\left( {0;0;1} \right)\) và \(D\left( { - 2;1; - 1} \right)\). Thể tích của tứ diện ABCD là:

(A) 1             (B) 2          (C) \({1 \over 3}\)            (D) \({1 \over 2}\)

Lời giải chi tiết:

\(\eqalign{
& \overrightarrow {AB} \left( { - 1;1;0} \right),\overrightarrow {AC} \left( { - 1;0;1} \right) \cr 
& \Rightarrow \left[ {\overrightarrow {AB} ;\overrightarrow {AC} } \right] = \left( {\left| \matrix{
1\,\,\,\,\,\,\,\,0 \hfill \cr 
0\,\,\,\,\,\,\,\,1 \hfill \cr} \right|;\left| \matrix{
0\,\,\,\, - 1 \hfill \cr 
1\,\,\,\,\, - 1 \hfill \cr} \right|;\left| \matrix{
- 1\,\,\,\,\,1 \hfill \cr 
- 1\,\,\,\,0 \hfill \cr} \right|} \right) \cr &= \left( {1;1;1} \right) \cr 
& \overrightarrow {AD} \left( { - 3;1; - 1} \right) \cr 
& \Rightarrow \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD} = 1.\left( { - 3} \right) + 1.1 + 1.\left( { - 1} \right) = - 3 \cr 
& \Rightarrow {V_{ABCD}} = {1 \over 6}\left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD} } \right| = {3 \over 6} = {1 \over 2}. \cr} \)

Chọn D

Câu 6

Cho \(A\left( { - 1; - 2;4} \right)\,\,;\,\,B\left( { - 4; - 2;0} \right)\,\,;\,\,C\left( {3; - 2;1} \right)\) và \(D\left( {1;1;1} \right)\). Độ dài đường cao của tứ diện ABCD kẻ từ đỉnh D là:

(A) 3                 (B) 1                   (C) 2                  (D) \({1 \over 2}\)

Lời giải chi tiết:

Độ dài đường cao của tứ diện ABCD kẻ từ D là khoảng cách từ D đến mp(ABC).
Ta có: 

\(\eqalign{
& \overrightarrow {AB} \left( { - 3;0; - 4} \right),\overrightarrow {AC} \left( {4;0; - 3} \right) \cr 
& \Rightarrow \left[ {\overrightarrow {AB} ;\overrightarrow {AC} } \right] = \left( {\left| \matrix{
0\,\,\,\,\,\,\, - 4 \hfill \cr 
0\,\,\,\,\,\,\,\, - 3 \hfill \cr} \right|;\left| \matrix{
- 4\,\,\, - 3 \hfill \cr 
- 3\,\,\,\,\,\,\,4 \hfill \cr} \right|;\left| \matrix{
- 3\,\,\,\,0 \hfill \cr 
4\,\,\,\,\,\,0 \hfill \cr} \right|} \right) = \left( {0; - 25;0} \right) = - 25\left( {0;1;0} \right) \cr} \)

Suy ra mặt phẳng (ABC) đi qua A và nhận \(\overrightarrow n  = \left( {0;1;0} \right)\) là vectơ pháp tuyến.
Phương trình mặt phẳng (ABC): \(y + 2 = 0\).

\( \Rightarrow h = d\left( {D;\left( {ABC} \right)} \right) = {{\left| {1 + 2} \right|} \over {\sqrt 1 }} = 3.\)
Chọn (A).

Câu 7

Cho bốn điểm \(A\left( {1;1;1} \right)\,\,,\,\,B\left( {1;2;1} \right)\,\,,C\left( {1;1;2} \right)\) và \(D\left( {2;2;1} \right).\) Tâm I mặt cầu ngoại tiếp tứ diện ABCD là:

(A) \(\left( {{3 \over 2}, - {3 \over 2},{3 \over 2}} \right)\)                 (B) \(\left( {{3 \over 2},{3 \over 2},{3 \over 2}} \right)\)

(C) \(\left( {3;3;3} \right)\)                          (D) \(\left( {3; - 3;3} \right).\)

Lời giải chi tiết:

Phương trình mặt cầu ngoại tiếp tứ diện ABCD có dạng

\({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\,\,\left( 1 \right)\)

Thay tọa độ của A, B, C, D vào (1) ta được hệ phương trình

\(\left\{ \matrix{
3 - 2a - 2b - 2c + d = 0 \hfill \cr 
6 - 2a - 4b - 2c + d = 0 \hfill \cr 
6 - 2a - 2b - 4c + d = 0 \hfill \cr 
9 - 4a - 4b - 2c + d = 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
a = b = c = {3 \over 2} \hfill \cr 
d = 6 \hfill \cr} \right. \Rightarrow I\left( {{3 \over 2};{3 \over 2};{3 \over 2}} \right)\).

Chọn (B).

Câu 8

Bán kính mặt cầu tâm I(3;3;-4) tiếp xúc với trục Oy bằng:

(A) 5                  (B) 4                (C) \(\sqrt 5 \)                   (D) \({5 \over 2}.\)

Lời giải chi tiết:

Hình chiếu của I trên trục Oy là I’(0; 3; 0).

Khoảng cách từ điểm I đến trục Oy bằng \(R = II' = \sqrt {{(-3)^2} + {4^2}}  = 5.\)

Chọn (A).

Câu 9

Mặt cầu tâm \(I\left( {2;1; - 1} \right)\) tiếp xúc với mặt phẳng tọa độ (Oyz) có phương trình là:

(A) \({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 1} \right)^2} = 4;\)

(B) \({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 1} \right)^2} = 1;\)

(C) \({\left( {x + 2} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 1} \right)^2} = 4;\)

(D) \({\left( {x + 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 1} \right)^2} = 2.\)

Lời giải chi tiết:

Mp(Oyz) có phương trình x = 0.

Khoảng cách từ I đến mp(Oyz) là \(R = {{\left| 2 \right|} \over {\sqrt {{1^2} + {0^2} + {0^2}} }} = 2.\)

Vậy phương trình mặt cầu cần tìm là:

\({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 1} \right)^2} = 4\)

Chọn (A).

Câu 10

Cho ba điểm \(A\left( {1;1;3} \right),\,\,B\left( { - 1;3;2} \right)\) và \(C\left( { - 1;2;3} \right).\)Mặt phẳng (ABC) có phương trình là:

(A) \(x + 2y + 2z - 3 = 0\)         

(B) \(x - 2y + 3z - 3 = 0;\)

(C) \(x + 2y + 2z - 9 = 0;\)     

(D) \({x^2} + 2y + 2z + 9 = 0\).

Lời giải chi tiết:

Mp(ABC) có vectơ pháp tuyến \(\overrightarrow n  = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {1;2;2} \right).\)

Vậy phương trình mặt phẳng (ABC) là:  \(x + 2y + 2z - 9 = 0\)
Chọn (C).

Câu 11

Cho ba điểm \(A\left( {1;0;0} \right),\,\,B\left( {0;2;0} \right),\,\,C\left( {0;0;3} \right).\) Phương trình nào sau đây không phải là phương trình mặt phẳng (ABC)?

(A) \(x + {y \over 2} + {z \over 3} = 1;\)

(B) \(6x + 3y + 2z - 6 = 0;\)

(C) \(6x + 3y + 2z + 6 = 0;\) 

(D) \(12x + 6y + 4z - 12 = 0.\)

Phương pháp giải:

Lời giải chi tiết:

Mp(ABC) \({x \over 1} + {y \over 2} + {z \over 3} = 1\)
Chọn (C).

Câu 12

Cho hai điểm \(A\left( {1;3; - 4} \right)\) và \(B\left( { - 1;2;2} \right)\). Phương trình mặt phẳng trung trực của đoạn AB là:

(A) \(4x + 2y - 12z - 17 = 0;\) 

(B) \(4x + 2y + 12z - 17 = 0;\)

(C) \(4x - 2y - 12z - 17 = 0;\) 

(D) \(4x - 2y + 12z + 17 = 0.\)

Lời giải chi tiết:

\(\overrightarrow {AB}  = \left( { - 2; - 1;6} \right).\)
Trung điểm AB là \(I\left( {0;{5 \over 2}; - 1} \right)\).
Phương trình mặt phẳng tung trực của AB đi qua I và có vectơ pháp tuyến là \(\overrightarrow n  = \overrightarrow {AB} \) nên có dạng: \( - 2\left( {x - 0} \right) - \left( {y - {5 \over 2}} \right) + 6\left( {z + 1} \right) = 0 \Leftrightarrow 4x + 2y - 12z - 17 = 0.\)
Chọn (A).

Câu 13

Cho A(a; 0; 0), B(0; b; 0), C(0; 0; c), a, b, c là những số dương thay đổi sao cho \({1 \over a} + {1 \over b} + {1 \over c} = 2.\) Mặt phẳng (ABC) luôn đi qua một điểm cố định có tọa độ là:

(A) (1; 1; 1)                    (B) (2; 2; 2)

(C) \(\left( {{1 \over 2},{1 \over 2},{1 \over 2}} \right)\)        (D) \(\left( { - {1 \over 2}, - {1 \over 2}, - {1 \over 2}} \right)\).

Lời giải chi tiết:

Phương trình mp(ABC): \({x \over a} + {y \over b} + {z \over c} = 1.\)
Mp(ABC) đi qua điểm \(\left( {{1 \over 2};{1 \over 2};{1 \over 2}} \right)\) cố định. 
Chọn (C).

Câu 14

Cho điểm \(A\left( { - 1;2;1} \right)\) và hai mặt phẳng \(\left( P \right):2x + 4y - 6z - 5 = 0\) và \(\left( Q \right):x + 2y - 3z = 0.\) Mệnh đề nào sau đây là đúng?

(A) Mp(Q) qua A và song song với (P);

(B) Mp(Q) không qua A và song song với (P);

(C) Mp(Q) qua A và không song song với (P);

(D) Mp(Q) không qua A và không song song với (P).

Lời giải chi tiết:

\(A \in \left( Q \right)\) và (Q) // (P).
Chọn (A).

Câu 15

Cho điểm \(A\left( {1;2; - 5} \right)\). Gọi M, N, P là hình chiếu của A lên ba trục Ox, Oy, Oz. Phương trình mặt phẳng (MNP) là:

(A) \(x + {y \over 2} - {z \over 5} = 1;\)          (B) \(x + {y \over 2} + {z \over 5} = 1;\)

(C) \(x + {y \over 2} - {z \over 5} = 0;\)            (D) \(x + {y \over 2} - {z \over 5} + 1 = 0.\)

Lời giải chi tiết:

Ta có \(M\left( {1;0;0} \right);N\left( {0;2;0} \right),P\left( {0;0; - 5} \right).\)
Mp(MNP): \({x \over 1} + {y \over 2} + {z \over { - 5}} = 1.\)
Chọn (A).

Câu 16

Cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 2\left( {x + y + z} \right) - 22 = 0\) và mặt phẳng (P): \(3x - 2y + 6z + 14 = 0.\) Khoảng cách từ tâm I của mặt cầu (S) tới mặt phẳng (P) là:

(A 1              (B) 2                 (C) 3                    (D) 4.

Lời giải chi tiết:

Tâm I(1; 1; 1).
\(d\left( {I;\left( P \right)} \right) = {{\left| {3 - 2 + 6 + 14} \right|} \over {\sqrt {9 + 4 + 36} }} = 3.\)
Chọn (C).

Câu 17

Mặt phẳng (P) cắt ba trục Ox, Oy, Oz tại A, B, C, trọng tâm tam giác ABC là \(G\left( { - 1; - 3;2} \right)\). Phương trình mặt phẳng (P) là:

(A) \(x + y - z - 5 = 0;\) 

(B) \(2x - 3y - z - 1 = 0;\)

(C) \(x + 3y - 2z + 1 = 0;\) 

(D) \(6x + 2y - 3z + 18 = 0.\)

Lời giải chi tiết:

Giả sử A(a; 0; 0), B(0; b; 0), C(0; 0; c) thì \(G\left( {{a \over 3};{b \over 3};{c \over 3}} \right) \Rightarrow a =  - 3,\,\,b =  - 9,\,\,c = 6.\)
Mp(ABC): \({x \over { - 3}} + {y \over { - 9}} + {z \over 6} = 1 \Leftrightarrow 6x + 2y - 3z + 18 = 0.\)
Chọn (D).

Câu 18

Cho hình lập phương ABCD.A’B’C’D’ cạnh bằng 1. Gọi M là trung điểm cạnh BC. Tính khoảng cách từ A tới mặt phẳng (A’MD).

Một học sinh làm như sau:

Bước 1: Chọn hệ trục tọa độ như hình vẽ. Kéo dài DM cắt AB tại E. Khi đó

\(\eqalign{
& A = \left( {0;0;0} \right)\,,\,\,\,\,\,\,\,\,\,\,\,\,E = \left( {2;0;0} \right) \cr 
& D = \left( {0;1;0} \right)\,,\,\,\,\,\,\,\,\,\,\,\,\,\,A' = \left( {0;0;1} \right) \cr} \)

Bước 2. Viết phương trình mặt phẳng (A’MD):

\({x \over 2} + {y \over 1} + {z \over 1} = 1 \Leftrightarrow x + 2y + 2z - 2 = 0.\)
Bước 3. Khoảng cách \(d\left( {A;\left( {A'MD} \right)} \right) = {{\left| { - 2} \right|} \over {\sqrt {1 + 4 + 4} }} = {2 \over 3}.\)

Bài giải trên đúng hay sai? Nếu sai thì sai ở bước nào?

(A) Đúng;                              (B) Sai ở bước 1;

(C) Sai ở bước 2;                (D) Sai ở bước 3.

Lời giải chi tiết:

Chon A

Câu 19

Cho hai điểm \(A\left( {1; - 1;5} \right)\) và \(B\left( {0;0;1} \right)\). Mặt phẳng (P) chứa A, B và song song với Oy có phương trình là:

(A) \(4x - z + 1 = 0\) 

(B) \(4x + y - z + 1 = 0\)

(C) \(2x + z - 5 = 0\)

(D) \(y + 4z - 1 = 0.\)

Lời giải chi tiết:

Mp(P) qua A và có vectơ pháp tuyến \(\overrightarrow n  = \left[ {\overrightarrow {AB} ;\overrightarrow j } \right]\) với \(\overrightarrow j  = \left( {0;1;0} \right).\)

\(\eqalign{
& \overrightarrow {AB} \left( { - 1;1; - 4} \right) \cr 
& \Rightarrow \left[ {\overrightarrow {AB} ;\overrightarrow j } \right] = \left( {\left| \matrix{
1\,\,\,\,\, - 4 \hfill \cr 
1\,\,\,\,\,\,\,\,0 \hfill \cr} \right|;\left| \matrix{
- 4\,\,\, - 1 \hfill \cr 
0\,\,\,\,\,\,\,\,\,0 \hfill \cr} \right|;\left| \matrix{
- 1\,\,\,\,1 \hfill \cr 
0\,\,\,\,\,\,1 \hfill \cr} \right|} \right) = \left( {4;0; - 1} \right) \cr} \)

Chon A

Câu 20

Mặt phẳng (P) chứa trục Oz và điểm \(A\left( {2; - 3;5} \right)\) có phương trình là:

(A) \(2x + 3y = 0;\)                    (B) \(2x - 3y = 0;\)

(C) \(3x + 2y = 0;\)                   (D) \(3x - 2y + z = 0.\)

Lời giải chi tiết:

Mp(P) qua O và có vectơ pháp tuyến \(\overrightarrow n  = \left[ {\overrightarrow {OA} ,\overrightarrow k } \right]\) với \(\overrightarrow k  = \left( {0;0;1} \right).\)

\(\eqalign{
& \overrightarrow {OA} \left( {2; - 3;5} \right) \cr 
& \Rightarrow \left[ {\overrightarrow {OA} ;\overrightarrow k } \right] = \left( {\left| \matrix{
- 3\,\,\,\,5 \hfill \cr 
0\,\,\,\,\,\,\,\,1 \hfill \cr} \right|;\left| \matrix{
5\,\,\,\,\,\,2 \hfill \cr 
1\,\,\,\,\,\,\,0 \hfill \cr} \right|;\left| \matrix{
2\,\,\,\, - 3 \hfill \cr 
0\,\,\,\,\,\,\,0 \hfill \cr} \right|} \right) = \left( { - 3; - 2;0} \right) \cr} \)

Chọn C

Câu 21

Cho mặt phẳng (P) có phương trình \(x - y - 1 = 0.\) Điểm \(H\left( {2; - 1; - 2} \right)\) là hình chiếu vuông góc của gốc tọa độ O trên một mặt phẳng (Q). Góc giữa hai mặt phẳng (P) và (Q) là:

(A) \({30^0}\)               (B) \({45^0}\)           (C) \({60^0}\)                (D) \({90^0}\)

Lời giải chi tiết:

mp(Q) có vectơ pháp tuyến \(\overrightarrow m  = \overrightarrow {OH}  = \left( {2; - 1; - 2} \right)\)
Mp(P) có vectơ pháp tuyến \(\overrightarrow n  = \left( {1; - 1;0} \right)\).
\(\varphi \) là góc giữa hai mặt phẳng (P) và (Q) thì:
\(\cos \varphi  = {{\left| {\overrightarrow m .\overrightarrow n } \right|} \over {\left| {\overrightarrow m } \right|.\left| {\overrightarrow n } \right|}} = {{\left| {2 + 1} \right|} \over {\sqrt {4 + 1 + 4} .\sqrt {1 + 1 + 0} }} = {1 \over {\sqrt 2 }} \Rightarrow \varphi  = {45^0}.\)
Chọn (B).

Câu 22

Cho điểm A(1; 2; 3) và đường thẳng \(d:{x \over 3} = {{y - 1} \over 4} = z + 3\). Phương trình mặt phẳng (A,d) là:

(A) \(23x + 17y - z + 14 = 0\)

(B) \(23x - 17y - z + 14 = 0;\)

(C) \(23x + 17y + z - 60 = 0;\) 

(D) \(23x - 17y + z - 14 = 0.\)

Lời giải chi tiết:

d có vectơ chỉ phương \(\overrightarrow u  = \left( {3,4,1} \right)\) và đi qua \(M\left( {0,1, - 3} \right).\)
Mp(A, d) qua A và có vectơ pháp tuyến \(\overrightarrow n  = \left[ {\overrightarrow {AM} ,\overrightarrow u } \right].\)

Vậy phương trình mặt phẳng cần tìm là:

\(23x - 17y - z + 14 = 0\)
Chọn (B).

Câu 23

Cho hai đường thẳng

\({d_1}:{{x - 1} \over 1} = {y \over 2} = {{z - 3} \over 3}\,\,;\,\,\,{d_2}:\left\{ \matrix{
x = 2t \hfill \cr 
y = 1 + 4t \hfill \cr 
z = 2 + 6t. \hfill \cr} \right.\)

Khẳng định nào sau đây là đúng?

(A) \({d_1},{d_2}\) cắt nhau;                         (B) \({d_1},{d_2}\) trùng nhau;

(C) \({d_1}//{d_2}\);                                    (D) \({d_1},{d_2}\) chéo nhau.

Lời giải chi tiết:

\({d_1},{d_2}\) có cùng vectơ chỉ phương \(\overrightarrow u  = \left( {1,2,3} \right)\) và  \(A\left( {1,0,3} \right) \in {d_1},\) nhưng \(A \notin {d_2}.\) Vậy \({d_1}\) // \({d_2}\)
Chọn (C).

Câu 24

Cho mặt phẳng \(\left( \alpha  \right):x + 3y + z + 1 = 0\) và đường thẳng 

\(d:\left\{ \matrix{
x = 1 + t \hfill \cr 
y = 2 - t \hfill \cr 
z = 2 - 3t. \hfill \cr} \right.\) Tọa độ giao điểm A của d và \(\left( \alpha  \right)\) là:

(A) A(3; 0; 4)                                   (B) \(A\left( {3; - 4;0} \right)\)

(C) \(A\left( { - 3;0;4} \right)\)                             (D) \(A\left( {3;0; - 4} \right)\).

Lời giải chi tiết:

Thay x, y, z từ d vào \(\left( \alpha  \right)\) ta có: \(1 + t + 3\left( {2 - t} \right) + 2 - 3t + 1 = 0 \Leftrightarrow t = 2.\)
Vậy \(A\left( {3,0, - 4} \right).\)
Chọn (D).

Câu 25

Cho đường thẳng

\(d:\left\{ \matrix{
x = 2t \hfill \cr 
y = 1 - t \hfill \cr 
z = 2 + t. \hfill \cr} \right.\)

Phương trình nào sau đây cũng là phương trình của đường thẳng d?
(A) 

\(\left\{ \matrix{
x = 2 - 2t \hfill \cr 
y = - t \hfill \cr 
z = 3 + t\,; \hfill \cr} \right.\)

(B) 

\(\left\{ \matrix{
x = 4 - 2t \hfill \cr 
y = - 1 + t \hfill \cr 
z = 4 - t\,; \hfill \cr} \right.\)

(C) 

\(\left\{ \matrix{
x = 4 + 2t \hfill \cr 
y = 1 - t \hfill \cr 
z = 4 + t\,; \hfill \cr} \right.\)

(D) 

\(\left\{ \matrix{
x = 2t \hfill \cr 
y = 1 + t \hfill \cr 
z = 2 + t\,. \hfill \cr} \right.\)

Lời giải chi tiết:

d đi qua \(M\left( {4, - 1,4} \right)\) có vectơ chỉ phương \(\overrightarrow u  = \left( {2; - 1;1} \right).\)
Chọn (B).

Câu 26

Cho hai điểm \(A\left( {2;3; - 1} \right),B\left( {1;2;4} \right)\) và ba phương trình sau:

\(\left( I \right)\,\,\left\{ \matrix{
x = 2 - t \hfill \cr 
y = 3 - t \hfill \cr 
z = - 1 + 5t\,; \hfill \cr} \right.\,\,\,\,\,\,\,\,\,\,\,\,\left( {II} \right)\,\,{{x - 2} \over 1} = {{y - 3} \over 1} = {{z + 1} \over { - 5}};\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {III} \right)\,\,\left\{ \matrix{
x = 1 - t \hfill \cr 
y = 2 - t \hfill \cr 
z = 4 + 5t\,. \hfill \cr} \right.\)

Mệnh đề nào sau đây là đúng?

(A) Chỉ có (I) là phương trình của đường thẳng AB;

(B) Chỉ có (III) là phương trình của đường thẳng AB;

(C) Chỉ có (I) và (II) là phương trình của đường thẳng AB;

(D) Cả (I), (II) và (III) là phương trình của đường thẳng AB.

Lời giải chi tiết:

Đường thẳng AB có vectơ chỉ phương \(\overrightarrow {AB}  = \left( { - 1, - 1,5} \right).\)
Chọn (D).

Câu 27

Cho ba điểm A(1; 3; 2), B(1; 2; 1), C(1; 1; 3). Viết phương trình đường thẳng \(\Delta \) đi qua trọng tâm G của tam giác ABC và vuông góc với mp(ABC).

Một học sinh làm như sau:

Bước 1: Tọa độ trong tâm G của tam giác ABC là

\(\left\{ \matrix{
{x_G} = {{1 + 1 + 1} \over 3} = 1 \hfill \cr 
{y_G} = {{3 + 2 + 1} \over 3} = 2 \hfill \cr 
{z_G} = {{2 + 1 + 3} \over 3} = 2. \hfill \cr} \right.\)

Bước 2: Vectơ pháp tuyến của mp(ABC) là \(\overrightarrow n  = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( { - 3;1;0} \right).\)

Bước 3:Phương trình tham số của đường thẳng \(\Delta \) là:

\(\left\{ \matrix{
x = 1 - 3t \hfill \cr 
y = 2 + t \hfill \cr 
z = 2. \hfill \cr} \right.\)

Bài giải trên đúng hay sai? Nếu sai thì sai ở bước nào?

(A) Đúng;                                    (B) Sai ở bước 1;

(C) Sai ở bước 2;                      (D) Sai ở bước 3.

Lời giải chi tiết:

\(\overrightarrow {AB}  = \left( {0, - 1, - 1} \right),\overrightarrow {AC}  = \left( {0, - 2,1} \right),\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( { - 3,0,0} \right).\)
Chọn (C).

Câu 28

Gọi d là đường thẳng đi qua gốc tọa độ O, vuông góc với trục Ox và vuông góc với đường thẳng

\(\Delta :\left\{ \matrix{
x = 1 + t \hfill \cr 
y = 2 - t \hfill \cr 
z = 1 - 3t. \hfill \cr} \right.\)

Phương trình của d là:
(A) 

\(\left\{ \matrix{
x = t \hfill \cr 
y = 3t \hfill \cr 
z = - t\,; \hfill \cr} \right.\)

(B) 

\(\left\{ \matrix{
x = 1 \hfill \cr 
y = - 3t \hfill \cr 
z = - t\,; \hfill \cr} \right.\)

(C) \({x \over 1} = {y \over 3} = {z \over { - 1}};\) 

(D)

\(\left\{ \matrix{
x = 0 \hfill \cr 
y = - 3t \hfill \cr 
z = t\,. \hfill \cr} \right.\)

Lời giải chi tiết:

Ox có vectơ chỉ phương \(\overrightarrow i  = \left( {1,0,0} \right).\)
\(\Delta \) có vectơ chỉ phương \(\overrightarrow u  = \left( {1, - 1, - 3} \right).\)
d có vectơ chỉ phương \(\overrightarrow a  = \left[ {\overrightarrow i ,\overrightarrow u } \right] = \left( {0,3, - 1} \right).\)
Chọn (D).

Câu 29

Cho đường thẳng 

\(d:\left\{ \matrix{
x = 3 + 4t \hfill \cr 
y = - 1 - t \hfill \cr 
z = 4 + 2t\, \hfill \cr} \right.\) và mặt phẳng \(\left( P \right):x + 2y - z + 3 = 0.\) Trong các mệnh đề sau đây, mệnh đề nào đúng?

(A) d song song với (P);                  (B) d cắt (P);

(C) d vuông góc với (P);                   (D) d nằm trên (P).

Lời giải chi tiết:

\(A\left( {3, - 1,4} \right),B\left( { - 1,0,2} \right) \in d\) và \(A,B \in \left( P \right).\)
Chọn (D).

Câu 30

Cho điểm A(1; 1; 1) và đường thẳng

\(d:\left\{ \matrix{
x = 6 - 4t \hfill \cr 
y = - 2 - t \hfill \cr 
z = - 1 + 2t\,. \hfill \cr} \right.\)

Hình chiếu của A trên d có tọa độ là

(A) \(\left( {2; - 3;1} \right);\)                    (B) \(\left( {2; - 3; - 1} \right);\)

(C) \((2; 3; 1)\);                          (D) \(\left( { - 2;3;1} \right).\)

Lời giải chi tiết:

Giả sử \(H\left( {6 - 4t, - 2 - t, - 1 + 2t} \right)\) là hình chiếu của A trên d. Ta có \(\overrightarrow {AH} \)vuông góc với \(\overrightarrow u  = \left( { - 4, - 1,2} \right)\) (là vectơ chỉ phương của d).

Ta có \(\overrightarrow {AH}  = \left( {5 - 4t, - 3 - t, - 2 + 2t} \right).\)
\(\overrightarrow {AH} .\overrightarrow u  = 0 \Leftrightarrow  - 4\left( {5 - 4t} \right) + 3 + t + 2\left( { - 2 + 2t} \right) = 0 \Leftrightarrow t = 1.\)
Vậy \(H\left( {2, - 3,1} \right).\)
Chọn (A).

Câu 31

Cho tứ diện ABCD có A(1; 0; 0), B(1; 1; 0), C(0; 1; 0) và D(0; 0; 2).

Tính khoảng cách giữa hai đường thẳng AC và BD.

Một học sinh làm như sau:

Bước 1: \(\overrightarrow {AC}  = \left( { - 1;1;0} \right),\,\,\overrightarrow {BD}  = \left( { - 1; - 1;2} \right),\,\,\overrightarrow {AB}  = \left( {0;1;0} \right).\)

Bước 2: \(\left[ {\overrightarrow {AC} ,\overrightarrow {BD} } \right] = \left( {2;2;2} \right)\).

Bước 3: \(d\left( {AC,BD} \right) = {{\left| {\left[ {\overrightarrow {AC} ,\overrightarrow {BD} } \right].\overrightarrow {AB} } \right|} \over {\left| {\left[ {\overrightarrow {AC} ,\overrightarrow {BD} } \right]} \right|}} = {2 \over {\sqrt {12} }} = {{\sqrt 3 } \over 3}.\)

Bài giải trên đúng hay sai? Nếu sai thì sai ở bước nào?

(A) Đúng;                     (B) Sai ở bước 1;

(C) Sai ở bước 2;         (D) Sai ở bước 3.

Lời giải chi tiết:

Bài toán trên đúng.
Chọn (A).

Câu 32

Cho \(\left| {\overrightarrow u } \right| = 2,\left| {\overrightarrow v } \right| = 1,\left( {\overrightarrow u ,\overrightarrow v } \right) = {\pi  \over 3}.\) Góc giữa vectơ \(\overrightarrow u \) và \(\overrightarrow u  - \overrightarrow v \) bằng:

(A) \({30^0}\)                 (B) \({45^0}\)           

(C) \({60^0}\)                 (D) \({90^0}\)

Lời giải chi tiết:

Ta có

\(\eqalign{
& \overrightarrow u .\overrightarrow v = \left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|\cos \left( {\overrightarrow u ,\overrightarrow v } \right) = 2.1.{1 \over 2} = 1 \cr 
& \Rightarrow \overrightarrow v \left( {\overrightarrow u - \overrightarrow v } \right) = \overrightarrow u .\overrightarrow v - {\left| {\overrightarrow v } \right|^2} = 1 - 1 = 0 \cr 
& \Rightarrow \overrightarrow v \bot \left( {\overrightarrow u - \overrightarrow v } \right). \cr} \)

Chọn (D).

Câu 33

Cho \(\left| {\overrightarrow u } \right| = 2,\left| {\overrightarrow v } \right| = 5,\left( {\overrightarrow u ,\overrightarrow v } \right) = {\pi  \over 6}.\) Độ dài vectơ \(\left[ {\overrightarrow u ,\overrightarrow v } \right]\) bằng:

(A) 10                      (B) 5;             

(C) 8;                  (D) \(5\sqrt 3 \)

Lời giải chi tiết:

\(\left| {\left[ {\overrightarrow u ,\overrightarrow v } \right]} \right| = \left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|.\sin \left( {\overrightarrow u ,\overrightarrow v } \right) = 2.5.{1 \over 2} = 5.\)
Chọn (B).

Câu 34

Mặt phẳng \(2x - 3y + z - 1 = 0\) cắt các trục tọa độ tại các điểm:

(A) \(\left( {{1 \over 2};0;0} \right)\,\,,\,\,\left( {0; - {1 \over 3};0} \right)\,\,,\,\,\left( {0;0;1} \right);\)
(B) \(\left( {1;0;0} \right)\,\,,\,\,\left( {0;{1 \over 3};0} \right)\,\,,\,\,\left( {0;0;1} \right);\)
(C) \(\left( {{1 \over 2};0;0} \right)\,\,,\,\,\left( {0;{1 \over 3};0} \right)\,\,,\,\,\left( {0;0;1} \right);\)
(D) \(\left( {{1 \over 2};0;0} \right)\,\,,\,\,\left( {0; - {1 \over 3};0} \right)\,\,,\,\,\left( {0;0; - 1} \right).\)

Lời giải chi tiết:

\(\eqalign{
& y = z = 0 \Rightarrow x = {1 \over 2},x = z = 0 \Rightarrow y = - {1 \over 3}. \cr 
& x = y = 0 \Rightarrow z = 1. \cr} \)

Chọn (A).

Câu 35

Cho đường thẳng 

\(d:\left\{ \matrix{
x = - {9 \over 5} - t \hfill \cr 
y = 5t \hfill \cr 
z = {7 \over 5} + 3t\, \hfill \cr} \right.\) và mặt phẳng \(\left( P \right):3x - 2y + 3z - 1 = 0.\) Gọi d’ là hình chiếu của d trên (P). Trong các vectơ sau, vectơ nào không phải là vectơ chỉ phương của d’ ?

(A) \(\left( {5; - 51;39} \right);\)

(B) \(\left( {10; - 102; - 78} \right);\)

(C) \(\left( { - 5;51;39} \right);\)

(D) \(\left( {5;51;39} \right).\)

Lời giải chi tiết:

Vì ba vectơ của (A), (B), (C) cùng phương nên chọn (D).

Câu 36

Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng 1. Gọi M, N, P lần lượt là trung điểm của A’B’, BC, DD’. Chứng minh rằng \(AC' \bot \left( {MNP} \right).\)

Một học sinh làm như sau:

Bước 1: Chọn hệ trục tọa độ như hình 71;

Khi đó A(0; 0; 0), C’(1; 1; 1),

\(M = \left( {{1 \over 2};0;1} \right),N\left( {1;{1 \over 2};0} \right),P\left( {0;1;{1 \over 2}} \right).\)
Bước 2: \(\overrightarrow {AC'}  = \left( {1;1;1} \right),\overrightarrow {MN}  = \left( {{1 \over 2};{1 \over 2}; - 1} \right),\overrightarrow {MP}  = \left( { - {1 \over 2};1; - {1 \over 2}} \right).\)

Bước 3: 

\(\left\{ \matrix{
\overrightarrow {AC'} .\overrightarrow {MN} = 0 \hfill \cr 
\overrightarrow {AC'} .\overrightarrow {MP} = 0 \hfill \cr} \right. \Rightarrow AC' \bot \left( {MNP} \right).\)

Bài giải trên đúng hay sai? Nếu sai thì sai ở bước nào?

(A) Đúng;                             (B) Sai ở bước 1;

(C) Sai ở bước 2;                           (D) Sai ở bước 3.

Lời giải chi tiết:

Bài toán trên giải đúng

chọn A

Câu 37

Cho đường thẳng

\(d:\left\{ \matrix{
x = 0 \hfill \cr 
y = t \hfill \cr 
z = 2 - t. \hfill \cr} \right.\)

Phương trình đường vuông góc chung của d và trục Ox là:
(A) 

\(\left\{ \matrix{
x = 1 \hfill \cr 
y = t \hfill \cr 
z = t\,; \hfill \cr} \right.\)

(B) 

\(\left\{ \matrix{
x = 0 \hfill \cr 
y = 2t \hfill \cr 
z = t\,; \hfill \cr} \right.\)

(C)

\(\left\{ \matrix{
x = 0 \hfill \cr 
y = 2 - t \hfill \cr 
z = t\,; \hfill \cr} \right.\)

(D) 

\(\left\{ \matrix{
x = 0 \hfill \cr 
y = t \hfill \cr 
z = t\,. \hfill \cr} \right.\)

Lời giải chi tiết:

Phương trình tham số của trục Ox là

\(\left\{ \matrix{
x = t \hfill \cr 
y = 0 \hfill \cr 
z = 0 \hfill \cr} \right.\)

Lấy \(P\left( {0,t,2 - t} \right) \in d\) và \(Q'\left( {t',0,0} \right) \in {\rm{Ox}}{\rm{.}}\)
\(\overrightarrow {PQ}  = \left( {t', - t,t - 2} \right),\) d có vectơ chỉ phương \(\overrightarrow u  = \left( {0,1, - 1} \right).\)
PQ là đường vuông góc chung của d và trục Ox

\( \Leftrightarrow \left\{ \matrix{
\overrightarrow {PQ} .\overrightarrow u = 0 \hfill \cr 
\overrightarrow {PQ} .\overrightarrow i = 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
- t - t + 2 = 0 \hfill \cr 
t' = 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
t = 1 \hfill \cr 
t' = 0 \hfill \cr} \right..\)

Vậy \(P\left( {0,1,1} \right),Q\left( {0,0,0} \right).\)
PQ có phương trình

\(\left\{ \matrix{
x = 0 \hfill \cr 
y = t \hfill \cr 
z = t \hfill \cr} \right..\)

Chọn (D).

Câu 38

Cho mặt phẳng (P): \(x - 2y - 3z + 14 = 0\) và điểm \(M\left( {1; - 1;1} \right)\). Tọa độ của điểm M’ đối xứng với M qua mp(P) là

(A) \(\left( { - 1;3;7} \right);\)                   

(B) \(\left( {1; - 3;7} \right);\)

(C) \(\left( {2; - 3; - 2} \right);\) 

(D) \(\left( {2; - 1;1} \right).\)

Lời giải chi tiết:

(P) có vectơ pháp tuyến \(\overrightarrow n  = \left( {1, - 2, - 3} \right).\)
\(M'\left( {x,y,z} \right)\) đối xứng với M qua mp(P) khi và chỉ khi  \(\overrightarrow {MM'} \) cùng phương với \(\overrightarrow n \) và trung điểm I của MM’ nằm trên (P).
Ta có hệ:

\(\left\{ \matrix{
{{x - 1} \over 1} = {{y + 1} \over { - 2}} = {{z - 1} \over { - 3}} \hfill \cr 
{{x + 1} \over 2} - 2{{y - 1} \over 2} - 3{{z + 1} \over 2} + 14 = 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = - 1 \hfill \cr 
y = 3 \hfill \cr 
z = 7 \hfill \cr} \right..\)

Chọn (A).

Câu 39

Cho điểm \(A\left( {0; - 1;3} \right)\) và đường thẳng

\(d:\left\{ \matrix{
x = 1 + 2t \hfill \cr 
y = 2 \hfill \cr 
z = - t\,. \hfill \cr} \right.\)

Khoảng cách từ A đến d bằng:

(A) \(\sqrt 3 ;\)             (B) \(\sqrt {14} ;\)                 

(C) \(\sqrt 6 ;\)              (D) \(\sqrt 8 .\)

Lời giải chi tiết:

d đi qua \(M(1, 2, 0)\) có vectơ chỉ phương \(\overrightarrow u  = \left( {2,0, - 1} \right).\)
Khoảng cách từ A đến d bằng \({{\left| {\left[ {\overrightarrow {AM} ,\overrightarrow u } \right]} \right|} \over {\left| {\overrightarrow u } \right|}} = \sqrt {14} .\)
Chọn (B).

Câu 40

Cho điểm \(M\left( { - 1;2; - 3} \right).\) Gọi \({M_1},{M_2},{M_3}\) lần lượt là điểm đối xứng của M qua các mặt phẳng (Oxy), (Oxz), (Oyz). Phương trình \(mp\left( {{M_1}{M_2}{M_3}} \right)\) là:

(A) \(6x + 2y + 3z + 6 = 0;\) 

(B) \(6x - 2y + 3z + 6 = 0;\)

(C) \(6x - 3y + 2z + 6 = 0;\)

(D) \(6x - 3y - 2z + 6 = 0.\)

Lời giải chi tiết:

\({M_1}\left( { - 1,2,3} \right),{M_2}\left( { - 1, - 2, - 3} \right),{M_3}\left( {1,2, - 3} \right);mp\left( {{M_1}{M_2}{M_3}} \right)\) qua có vectơ pháp tuyến \(\overrightarrow n  = \left[ {\overrightarrow {{M_1}{M_2}} ,\overrightarrow {{M_1}{M_3}} } \right].\)
Chọn (C).

Câu 41

Cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z - 2} \right)^2} = 49.\) Phương trình nào sau đây là phương trình của mặt phẳng tiếp xúc với mặt cầu (S) ?

(A) \(6x + 2y + 3z = 0;\)

(B) \(2x + 3y + 6z - 5 = 0;\)

(C) \(6x + 2y + 3z - 55 = 0;\) 

(D) \(x + 2y + 2z - 7 = 0.\)

Lời giải chi tiết:

(S) có tâm \(I\left( {1, - 3,2} \right),\) bán kính R = 7.
\(d\left( {I,\left( P \right)} \right) = 7.\)
Chọn (C).

Câu 42

Cho mặt cầu (S): \({x^2} + {y^2} + {z^2} - 2x - 4y - 6z = 0.\) Trong ba điểm (0; 0; 0); (1; 2; 3), (2; -1; -1), có bao nhiêu điểm nằm trong mặt cầu (S) ?

(A) 0 ;                         (B) 1 ;                   

(C) 2 ;                         (D) 3.

Lời giải chi tiết:

Lần lượt thay tọa độ ba điểm đã cho vào (S). Ta có \(O \in \left( S \right).\)

Chọn (B).

Loigiaihay.com


Bình chọn:
3.4 trên 5 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài