Câu 7 trang 78 SGK Hình học 11 Nâng cao


Đề bài

Cho hình hộp ABCD.A’B’C’D’. Trên ba cạnh AB, DD’, C’B’ lần lượt lấy ba điểm M, N, P không trùng với các đỉnh sao cho \({{AM} \over {AB}} = {{D'N} \over {D'D}} = {{B'P} \over {B'C'}}\)

a. Chứng minh rằng mp(MNP) và mp(AB'D’) song song với nhau

b. Xác định thiết diện của hình hộp khi cắt bởi mp(MNP)

Lời giải chi tiết

 

a. Kẻ ME song song với AB’ (E ∈ BB’) (1)

Ta có: \(\eqalign{  & {{B'E} \over {B'B}} = {{AM} \over {AB}} \Rightarrow {{B'E} \over {B'B}} = {{B'P} \over {B'C'}}  \cr  &  \cr} \)

⇒ EP // BC’  ⇒EP // AD’ (2)

Từ (1) và (2) suy ra (MEP) // (AB’D’) (3)

Rõ ràng D’N = B’E nên  EN // B’D’

Mà B’D’ ⊂ (AB’D’) và E ∈ (MEP) nên từ (3) suy ra EN ⊂ (MEP), tức (MNP) chính là (MEP)

Vậy (MNP) // (AB’D’)

b. Từ M kẻ ME song song với AB’, từ P kẻ PF song song với B’D’. Từ N kẻ NK song song với AD’ cắt AD tại K

Thiết diện là lục giác MEPFNK có các cạnh đối song song

Loigiaihay.com


Bình chọn:
3 trên 4 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

>> Luyện thi TN THPT & ĐH năm 2023 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.