Câu 4.38 trang 108 SBT Đại số 10 Nâng cao


Giải bài tập Câu 4.38 trang 108 SBT Đại số 10 Nâng cao.

Đề bài

Bạn Nam đã giải bất phương trình

\(\sqrt {{{\rm{x}}^2} - 1}  - \sqrt {{\rm{x}} + 1}  \ge x + 1\)                  (1)

Như sau :

Điều kiện :

\(\left\{ {\begin{array}{*{20}{c}}{{x^2} - 1 \ge 0}\\{x + 1 \ge 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\left( {{\rm{x}} - 1} \right)\left( {{\rm{x}} + 1} \right) \ge 0}\\{x + 1 \ge 0}\end{array}} \right. \)

\(\Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x - 1 \ge 0}\\{x + 1 \ge 0}\end{array}} \right. \Leftrightarrow {\rm{x}} \ge 1.\)

Khi đó bất phương trình (1) có dạng

\(\sqrt {\left( {{\rm{x}} - 1} \right)\left( {{\rm{x}} + 1} \right)}  - \sqrt {{\rm{x}} + 1}  \ge x + 1\)

Chia hai vế cho \(\sqrt {{\rm{x}} + 1}  > 0,\) ta có

\(\sqrt {{\rm{x}} - 1}  - 1 \ge \sqrt {{\rm{x}} + {\rm{1}}} \)

Vì x ≥ 1 nên \(\sqrt {{\rm{x}} - 1}  < \sqrt {{\rm{x}} + 1} ,\) do đó \(\sqrt {{\rm{x}} - 1}  - 1 < \sqrt {{\rm{x}} + 1} \)

Vậy bất phương trình (1) vô nghiệm.

Theo em, bạn Nam giải đúng hay sai, vì sao ?

 
 
 

Lời giải chi tiết

Nhận thấy rằng \(x = -1\) là nghiệm của bất phương trình (1). Do đó bạn Nam giải sai. Sai lầm của bạn Nam ở chỗ :

Từ  \(\left( I \right)\left\{ {\begin{array}{*{20}{c}}{{x^2} - 1 \ge 0}\\{x + 1 \ge 0}\end{array}} \right. \Leftrightarrow \left( {II} \right)\left\{ {\begin{array}{*{20}{c}}{x - 1 \ge 0}\\{x + 1 \ge 0}\end{array}} \right.\)

(thấy ngay \(x = -1\) là nghiệm của (I) nhưng không là nghiệm của (II)).

Suy luận đúng là

\(\left\{ {\begin{array}{*{20}{c}}{AB \ge 0}\\{A \ge 0}\end{array}} \right. \Leftrightarrow {\rm{A}} = 0\) hoặc \(\left\{ {\begin{array}{*{20}{c}}{B \ge 0}\\{A > 0}\end{array}} \right.\)

Loigiaihay.com

 
 
 

Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí