Câu 38 trang 85 SGK Đại số và Giải tích 11 Nâng cao


Đề bài

Có hai hòm đựng thẻ, mỗi hòm đựng 12 thẻ đánh số từ 1 đến 12. Từ mỗi hòm rút ngẫu nhiên một thẻ. Tính xác suất để trong hai thẻ rút ra có ít nhất một thẻ đánh số 12.

Lời giải chi tiết

Goị A là biến cố “Thẻ rút từ hòm thứ nhất không đánh số 12”

B là biến cố “Thẻ rút từ hòm thứ hai không đánh số 12”.

Ta có:  \(P\left( A \right) = P\left( B \right) = {{11} \over {12}}.\)

Gọi H là biến cố “Trong hai thẻ rút từ hai hòm có ít nhất một thẻ đánh số 12”.

Khi đó biến cố đối của biến cố H là  \(\overline H \): “Cả hai thẻ rút từ hai hòm đều không đánh số 12”.

Vậy \(\overline H = AB\) .

Theo qui tắc nhân xác suất, ta có:

\(\eqalign{
& P\left( {\overline H } \right) = P\left( {AB} \right) = P\left( A \right)P\left( B \right) = {{121} \over {144}} \cr 
& \text{Vậy }\,P\left( H \right) = 1 - P\left( {\overline H } \right) = 1 - {{121} \over {144}} = {{23} \over {144}} \cr} \)

Loigiaihay.com


Bình chọn:
4 trên 4 phiếu

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài