Câu 3.53 trang 67 SBT Đại số 10 Nâng cao


Giải bài tập Câu 3.53 trang 67 SBT Đại số 10 Nâng cao.

Lựa chọn câu để xem lời giải nhanh hơn

Giải các hệ phương trình sau:

LG a

\(\left\{ {\begin{array}{*{20}{c}}{2{x^2} - {y^2} = 1}\\{xy + {x^2} = 2}\end{array}} \right.\)

Lời giải chi tiết:

(1; -1) và (-1 ; -1).

Gợi ý. Ta có \(xy + x{{\rm}^2} = 2\left( {2x{{\rm}^2} - {y^2}} \right).\) Suy ra \(\left( x{{\rm} - y} \right)\left( {3x{\rm-} + 2y} \right) = 0\)

 

LG b

\(\left\{ \matrix{{x^2} + {y^2} = 25 - 2x \hfill \cr y\left( {x + y} \right) = 10 \hfill \cr} \right.\)

Lời giải chi tiết:

\(\left( { - 3; - 2} \right)\) và \(\left( {3;2} \right).\) Gợi ý. Từ phương trình thứ nhất suy ra \(x + y = 5\) hoặc \(x + y =  - 5\)

LG c

 \(\left\{ \matrix{2{\left( {x + y} \right)^2} + 2{\left( {x - y} \right)^2} = 5\left( {{x^2} - {y^2}} \right) \hfill \cr {x^2} + {y^2} = 20 \hfill \cr} \right.\)

Lời giải chi tiết:

\(\left( {3\sqrt 2 ;\sqrt 2 } \right),\left( {3\sqrt 2 ; - \sqrt 2 } \right),\left( { - 3\sqrt 2 ; - \sqrt 2 } \right)\) và \(\left( { - 3\sqrt 2 ;\sqrt 2 } \right)\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí