
Đề bài
Cho hình chóp S.ABCD. Gọi M là một điểm nằm trong tam giác SCD
a. Tìm giao tuyến của hai mặt phẳng (SMB) và (SAC)
b. Tìm giao điểm của đường thẳng BM và mp(SAC)
c. Xác định thiết diện của hình chóp khi cắt bởi mp(ABM)
Lời giải chi tiết
a. Tìm (SBM) ∩ (SAC)
Dễ thấy \(S \in \left( {SBM} \right) \cap \left( {SAC} \right)\)
Trong (SCD), gọi N = SM ∩ CD
Trong mp(ABCD) gọi O = BN ∩ AC
\( \Rightarrow \left\{ \begin{array}{l}
O \in BN \subset \left( {SBM} \right)\\
O \in AC \subset \left( {SAC} \right)
\end{array} \right. \)\(\Rightarrow O \in \left( {SBM} \right) \cap \left( {SAC} \right)\)
Vậy SO = (SBM) ∩ (SAC)
b. Tìm BM ∩ (SAC)
Chọn mặt phẳng phụ chứa BM là (SBN)
Ta có: (SBN) ∩ (SAC) = SO (theo câu a)
Gọi I = SO ∩ BM thì
\(\left\{ \begin{array}{l}
I \in SO \subset \left( {SAC} \right)\\
I \in BM
\end{array} \right. \)\(\Rightarrow I = BM \cap \left( {SAC} \right)\)
c. Trong mp(SAC) gọi P = AI ∩ SC
Trong mp(SCD), PM cắt SD tại Q.
Thiết diện của hình chóp khi cắt bởi mp(ABM) là tứ giác ABPQ.
Loigiaihay.com
Cho hình chóp tứ giác S.ABCD. Ba điểm A’, B’, C’lần lượt nằm trên ba cạnh SA, SB, SC nhưng không trùng với S, A, B, C. Xác định thiết diện của hình chóp khi cắt bởi mp(A’B’C’)
Dùng bìa cứng cắt và dán lại để thành a. Một tứ diện đều b. Một hình chóp tứ giác có đáy là hình vuông và các mặt bên là các tam giác đều
Thiết diện của một hình tứ diện có thể là tam giác, tứ giác hoặc ngũ giác hay không ?
Vẽ một số hình biểu diễn của một hình chóp tứ giác trong các trường hợp đáy là tứ giác lồi, đáy là hình bình hành, đáy là hình thang
Cho hình bình hành ABCD nằm trong mặt phẳng (P) và một điểm S nằm ngoài mp(P). Gọi M là điểm nằm giữa S và A ; N là điểm giữa S và B; giao điểm của hai đường thẳng AC và BD là O
Cho hai đường thẳng a và b cắt nhau tại điểm O và đường thẳng c cắt mp(a , b) ở điểm I khác O. Gọi M là điểm di động trên c và khác I. Chứng minh rằng giao tuyến của các mặt phẳng (M , a), (M , b) nằm trên một mặt phẳng cố định
Cho ba đường thẳng a, b, c không cùng nằm trong một mặt phẳng sao cho chúng đôi một cắt nhau. Chứng minh rằng chúng đồng quy
Cho hai đường thẳng a và b cắt nhau. Một đường thẳng c cắt cả a và b. Có thể kết luận rằng ba đường thẳng a, b, c cùng nằm trong một mặt phẳng hay không ?
Hãy tìm mệnh đề đúng trong các mệnh đề sau đây:
Trong các mệnh đề sau đây, mệnh đề nào đúng ?
Cho mặt phẳng (P) và ba điểm không thẳng hàng A, B, C cùng nằm ngoài (P). Chứng minh rằng nếu ba đường thẳng AB, BC, CA đều cắt mp (P) thì các giao điểm đó thẳng hàng
Cho hai mặt phẳng (P) và (Q) cắt nhau theo giao tuyến △. Trên (P) cho đường thẳng a và trên (Q) cho đường thẳng b. Chứng minh rằng nếu a và b cắt nhau thì giao điểm phải nằm trên △
Với một cái thước thẳng, làm thế nào để phát hiện một mặt bàn có phẳng hay không ? Nói rõ căn cứ vào đâu mà ta làm như vậy
Em hãy giải thích vì sao các đồ vật có bốn chân như bàn, ghế, … thường dễ bị cập kênh
Trong các mệnh đề sau đây, mệnh đề nào đúng ?
>> Xem thêm
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: