Câu 1 trang 100 SGK Đại số và Giải tích 11 Nâng cao


Chứng minh rằng

Đề bài

Chứng minh rằng với mọi số nguyên dương n, ta luôn có đẳng thức sau :

\(1 + 2 + 3 + ... + n = {{n\left( {n + 1} \right)} \over 2}\)   (1)

Lời giải chi tiết

+) Với n = 1 ta có \(1 = {{1\left( {1 + 1} \right)} \over 2}\) (đúng).

Vậy (1) đúng với n = 1

+) Giả sử (1) đúng với \(n = k\), tức là ta có:

\(1 + 2 + 3 + ... + k = {{k\left( {k + 1} \right)} \over 2}\)

Ta chứng minh (1) đúng với \(n = k + 1\) tức là phải chứng minh :

\(1 + 2 + ... + k + \left( {k + 1} \right) = {{\left( {k + 1} \right)\left( {k + 2} \right)} \over 2}\)

Thật vậy ta có :

\(\eqalign{
& 1 + 2 + ... + k + \left( {k + 1} \right) \cr 
& = {{k\left( {k + 1} \right)} \over 2} + \left( {k + 1} \right) \cr 
& = {{k\left( {k + 1} \right) + 2\left( {k + 1} \right)} \over 2} \cr 
& = {{\left( {k + 1} \right)\left( {k + 2} \right)} \over 2} \cr} \)

Vậy (1) đúng với \(n = k + 1\) do đó (1) đúng với mọi n nguyên dương.

Loigiaihay.com


Bình chọn:
3.4 trên 5 phiếu

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài