Giải toán 10, giải bài tập Toán 10 Nâng cao, đầy đủ đại số giải tích và hình học
Bài 8. Ba đường cônic
Bài 48 trang 114 SGK Hình học 10 Nâng cao >
Viết phương trình của đường cônic nhận F là tiêu điểm và là đường chuẩn trong mỗi trường hợp sau đây
Cho đường thẳng \(\Delta :x + y - 1 = 0\) và điểm F(1, 1) . Viết phương trình của đường cônic nhận F là tiêu điểm và \(\Delta \) là đường chuẩn trong mỗi trường hợp sau đây
LG a
Tâm sai e = 1
Phương pháp giải:
Đường cô nic là tập hợp các điểm M thỏa mãn \(\frac{{MF}}{{d\left( {M,\Delta } \right)}} = e > 0\)
Lời giải chi tiết:
Giả sử: \(M\left( {x;y} \right) \in \left( C \right)\)
\(\eqalign{
& MF = \sqrt {{{\left( {1 - x} \right)}^2} + {{\left( {1 - y} \right)}^2}}\cr& d\left( {M,\Delta } \right) = {{|x + y - 1|} \over {\sqrt 2 }} \cr
& {{MF} \over {d\left( {M,\Delta } \right)}} = e = 1\cr& \Leftrightarrow \sqrt {{{\left( {1 - x} \right)}^2} + {{\left( {1 - y} \right)}^2}} = {{|x + y - 1|} \over {\sqrt 2 }} \cr
& \Leftrightarrow 2\left( {{x^2} - 2x + 1 + {y^2} - 2y + 1} \right) \cr&={x^2} + {y^2} + 1 + 2xy - 2x - 2y \cr
& \Leftrightarrow {x^2} + {y^2} - 2xy - 2x - 2y + 3 = 0 \cr} \)
LG b
Tâm sai \(e = \sqrt 2 ;\)
Lời giải chi tiết:
\(\eqalign{
& \,\,\,{{MF} \over {d\left( {M,\Delta } \right)}} = \sqrt 2 \cr& \Leftrightarrow MF = \sqrt 2 d\left( {M,\Delta } \right)\cr & \Leftrightarrow \sqrt {{{\left( {1 - x} \right)}^2} + {{\left( {1 - y} \right)}^2}} = \sqrt 2 .\frac{{\left| {x + y - 1} \right|}}{{\sqrt 2 }}\cr &\Leftrightarrow \sqrt {{{\left( {1 - x} \right)}^2} + {{\left( {1 - y} \right)}^2}} = |x + y - 1| \cr
& \Leftrightarrow {x^2} - 2x + 1 + {y^2} - 2y + 1 = \cr&\;\;\;\;{x^2} + {y^2} + 1 + 2xy - 2x - 2y \cr
& \Leftrightarrow 2xy - 1 = 0 \cr} \)
LG c
Tâm sai \(e = {1 \over {\sqrt 2 }}.\)
Lời giải chi tiết:
\(\eqalign{
& {{MF} \over {d\left( {M,\Delta } \right)}} = {1 \over {\sqrt 2 }}\cr& \Leftrightarrow MF = \frac{1}{{\sqrt 2 }}d\left( {M,\Delta } \right) \cr& \Leftrightarrow \sqrt {{{\left( {1 - x} \right)}^2} + {{\left( {1 - y} \right)}^2}} = \frac{1}{{\sqrt 2 }}.\frac{{\left| {x + y - 1} \right|}}{{\sqrt 2 }}\cr & \Leftrightarrow \sqrt {{{\left( {1 - x} \right)}^2} + {{\left( {1 - y} \right)}^2}} = {{|x + y - 1|} \over 2} \cr
& \Leftrightarrow 4\left( {{x^2} - 2x + 1 + {y^2} - 2y + 1} \right) = \cr&{x^2} + {y^2} + 1 + 2xy - 2x - 2y \cr
& \Leftrightarrow 3{x^2} + 3{y^2} - 6x - 6y - 2xy + 7 = 0. \cr} \)
Loigiaihay.com




