Bài 42 trang 124 SGK Toán 7 tập 1


Cho tam giác ABC có...

Đề bài

Cho tam giác \(ABC\) có \(\widehat{A}= 90^o\) (h.109), kẻ \(AH\) vuông góc với \(BC\) \((H∈BC).\) Các tam giác \(AHC\) và \(BAC \) có \(AC\) là cạnh chung, \(\widehat C\) là góc chung,  \(\widehat{AHC}=\widehat{BAC}= 90^o\), nhưng hai tam giác không bằng nhau. Tại sao ở đây không áp dụng trường hợp góc cạnh góc để kết luận \(∆AHC= ∆BAC?\) 

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Nếu một cạnh và hai góc kề của tam giác này bằng một cạnh và góc kề của tam giác kia thì hai tam giác đó bằng nhau.

Lời giải chi tiết

Xét \(∆AHC\) và \( ∆BAC\) có:

+) \(AC\) là cạnh chung 

+) \(\widehat{C}\) là góc chung

+) \(\widehat{AHC}=\widehat{BAC}=90^o\)    

Nhưng hai tam giác không bằng nhau vì \(\widehat{AHC}\) không phải là góc kề với cạnh \(AC\) nên ta không thể suy ra hai tam giác này bằng nhau theo trường hợp góc - cạnh - góc.

Loigiaihay.com


Bình chọn:
4.4 trên 136 phiếu

>> Xem thêm

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí