Bài 35 trang 123 SGK Toán 7 tập 1


Đề bài

Cho góc \(xOy\) khác góc bẹt, \(Ot\) là tia phân giác của góc đó. Qua \(H\) thuộc tia \(Ot\) , kẻ  đường vuông góc với \(Ot\), nó cắt \(Ox\) và \(Oy\)  theo thứ tự  \(A\) và \(B\).

a) Chứng minh rằng \(OA=OB\).

b ) Lấy điểm \(C\) thuộc tia \(Ot\), chứng minh rằng \(CA=CB\) và \(\widehat{OAC }= \widehat{OBC }\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

a) Nếu một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề của tam giác kia thì hai tam giác đó bằng nhau.

b) Nếu hai cạnh và một góc xen giữa của tam giác này bằng hai cạnh và một góc xen giữa của tam giác vuông kia thì hai tam giác đó bằng nhau.

Lời giải chi tiết

a) Xét \(∆AOH\) và  \(∆BOH\) có: 

+) \(\widehat{AOH}=\widehat{BOH}\) (vì \(Ot\) là phân giác của \(\widehat {xOy}\))

+) \(OH\) là cạnh chung

+) \(\widehat {AHO} = \widehat {BHO}\,\,\left( { = {{90}^0}} \right)\)

\( \Rightarrow ∆AOH =∆BOH\) ( g.c.g)

\( \Rightarrow OA=OB\) (hai cạnh tương ứng).

b) Xét  \(∆AOC\) và \(∆BOC\) có:

+) \(OA=OB\) (chứng minh trên)

+) \(\widehat{AOC}=\widehat{BOC}\)  (vì \(Ot\) là phân giác của \(\widehat {xOy}\))

+) \(OC\) cạnh chung.

\( \Rightarrow ∆AOC= ∆BOC\) (c.g.c)

\( \Rightarrow CA=CB\) ( hai cạnh tương ứng)

\( \Rightarrow \widehat{OAC }= \widehat{OBC }\)  (hai góc tương ứng).

Loigiaihay.com


Bình chọn:
4.6 trên 438 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 7 - Xem ngay

>> Học trực tuyến lớp 7 trên Tuyensinh247.com cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả.