Đề kiểm tra 15 phút - Đề số 16 - Bài 2, 3, 4, 5 - Chương 2 - Hình học 7


Đề bài

Cho tam giác ABC có  \(\widehat B = \widehat C\). Tia phân giác của góc A cắc BC tại D. Chứng minh:

a) \(\Delta ADB = \Delta ADC\)            

b) \(AD \bot BC\)

Phương pháp giải - Xem chi tiết

Tổng ba góc trong một tam giác bằng 180 độ

Tổng hai góc kề bù bằng 180 độ

Lời giải chi tiết

a) Xét ta \(\Delta ADB \) có \(\widehat {{A_1}} + \widehat B + \widehat {ADB} = {180^o}\)

\( \Rightarrow \widehat {ADB} = {180^o} - \left( {\widehat {{A_1}} + \widehat B} \right).\)

Tương tự với \( \Delta ADC\) ta có

\(\widehat {ADC} = {180^o} - \left( {\widehat {{A_2}} + \widehat C} \right)\)

Mà \(\widehat {{A_1}} = \widehat {{A_2}},\,\widehat B = \widehat C\) (giả thiết)

\( \Rightarrow \widehat {ADB} = \widehat {ADC}\)

Xét \(\Delta ADB \) và \( \Delta ADC\) có

+) \(\widehat {{A_1}} = \widehat {{A_2}}\)(giả thiết)

+) AD cạnh chung;

+) \(\widehat {ADB} = \widehat {ADC}\) (chứng minh trên)

\(\Rightarrow \Delta ADB = \Delta ADC\) (g.c.g).

b) Ta có \(\widehat {ADB} = \widehat {ADC}\) (chứng minh trên), mà \(\widehat {ADB} + \widehat {ADC} = {180^o}\)(cặp góc kề bù)

\( \Rightarrow \widehat {ADB} = \widehat {ADC} = {90^o}\).

Chứng tỏ \(AD \bot BC\).

Loigiahay.com


Bình chọn:
4.3 trên 8 phiếu

Các bài liên quan: - Bài 2. Hai tam giác bằng nhau

Luyện Bài tập trắc nghiệm môn Toán lớp 7 - Xem ngay

>> Học trực tuyến lớp 7 trên Tuyensinh247.com cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả.