Giải toán 10, giải bài tập Toán 10 Nâng cao, đầy đủ đại số giải tích và hình học
Bài 1. Giá trị lượng giác của một góc bất kì
Bài 3 trang 43 SGK Hình học 10 nâng cao>
Chứng minh các hệ thức sau
Chứng minh các hệ thức sau
LG a
\({\sin ^2}\alpha + {\cos ^2}\alpha = 1\)
Phương pháp giải:
Sử dụng đường tròn lượng giác và định lí Pitago trong tam giác vuông để chứng minh.
Lời giải chi tiết:

Vẽ nửa đường tròn lượng giác (O; 1).
Với mọi α (0º ≤ α ≤ 180º) ta đều có điểm M(x0; y0) thuộc nửa đường tròn sao cho \(\widehat {xOM} = \alpha \)
Khi đó ta có: sin α = y0 ; cos α = x0.
Mà M thuộc đường tròn lượng giác nên OM=1.
Ta có:
\(\begin{array}{l}
{\sin ^2}\alpha + {\cos ^2}\alpha = y_0^2 + x_0^2\\
= O{E^2} + O{F^2} = M{F^2} + O{F^2}\\
= O{M^2} = {1^2} = 1\\
\Rightarrow {\sin ^2}\alpha + {\cos ^2}\alpha = 1
\end{array}\)
Cách khác:
TH1: \(\alpha = {0^0}\) thì \({\sin ^2}\alpha + {\cos ^2}\alpha = {\sin ^2}0^0 + {\cos ^2}0^0 \) \(=0^2+1^2= 1\)
TH2: \(\alpha = {180^0}\) thì \({\sin ^2}\alpha + {\cos ^2}\alpha = {\sin ^2}180^0 + {\cos ^2}180 ^0\) \(=0^2+(-1)^2= 1\)
TH3: \(0^0 < \alpha < {90^0}\).

Xét tam giác \(ABC\) vuông tại \(A\), đặt \(\widehat B = \alpha \) có:
\(\sin \alpha = \sin B = \dfrac{{AC}}{{BC}},\) \(\cos \alpha = \cos B = \dfrac{{AB}}{{BC}}\)
\( \Rightarrow {\sin ^2}\alpha + {\cos ^2}\alpha \) \(= {\left( {\dfrac{{AC}}{{BC}}} \right)^2} + {\left( {\dfrac{{AB}}{{BC}}} \right)^2}\) \( = \dfrac{{A{C^2} + A{B^2}}}{{B{C^2}}} = \dfrac{{B{C^2}}}{{B{C^2}}} = 1\)
TH4: \({90^0} < \alpha < {180^0}\).
\( \Rightarrow {0^0} < {180^0} - \alpha < {90^0} \)
\(\Rightarrow {\sin ^2}\left( {{{180}^0} - \alpha } \right) + {\cos ^2}\left( {{{180}^0} - \alpha } \right)=1\) (áp dụng TH3)
\( \Rightarrow {\sin ^2}\alpha + {\left( { - \cos \alpha } \right)^2} =1\) (vì \(\sin \left( {{{180}^0} - \alpha } \right) = \sin \alpha ,\) \(\cos \left( {{{180}^0} - \alpha } \right) = - \cos \alpha \))
\(\Rightarrow {\sin ^2}\alpha + {\cos ^2}\alpha = 1\)
Vậy ta có đpcm.
LG b
\(1 + {\tan ^2}\alpha = {1 \over {{{\cos }^2}\alpha }}\,\,\,\,\,(\alpha \ne {90^0})\)
Lời giải chi tiết:
\(1 + {\tan ^2}\alpha = 1 + {{{{\sin }^2}\alpha } \over {{{\cos }^2}\alpha }} \)
\(= {{{{\cos }^2}\alpha + {{\sin }^2}\alpha } \over {{{\cos }^2}\alpha }} = {1 \over {{{\cos }^2}\alpha }}\,\)
LG c
\(1 + {\cot ^2}\alpha = {1 \over {{{\sin }^2}\alpha }}\,\,\,\,\,({0^0} < \alpha < {180^0})\)
Lời giải chi tiết:
\(1 + {\cot ^2}\alpha = 1 + {{{{\cos }^2}\alpha } \over {{{\sin }^2}\alpha }} \)
\(= {{{{\sin }^2}\alpha + {{\cos }^2}\alpha } \over {{{\sin }^2}\alpha }} = {1 \over {{{\sin }^2}\alpha }}\,\)
Loigiaihay.com




