Bài 1 trang 43 SGK Hình học 10 nâng cao

Bình chọn:
3.3 trên 4 phiếu

Tính giá trị đúng của các biểu thức sau( không dùng máy tính bỏ túi hoặc bảng số)

Bài 1. Tính giá trị đúng của các biểu thức sau (không dùng máy tính bỏ túi hoặc bảng số)

a) \((2\sin {30^0} + \cos {135^0} - 3\tan {150^0})(\cos {180^0} - \cot {60^0})\)

b) \({\sin ^2}{90^0} + {\cos ^2}{120^0} + {\cos ^2}{0^0} - {\tan ^2}{60^0} + {\cot ^2}{135^0}\).

Hướng dẫn trả lời

a) Ta có 

\(\eqalign{
& \cos {135^0} = \cos ({180^0} - {45^0}) = - \cos {45^0} = - {{\sqrt 2 } \over 2} \cr
& \tan {150^0} = \tan ({180^0} - {30^0}) = - \tan {30^0} = - {{\sqrt 3 } \over 3} \cr} \)

Do đó

\(\eqalign{
& (2\sin {30^0} + \cos {135^0} - 3\tan {150^0})(\cos {180^0} - \cot {60^0}) \cr
& = \left( {1 - {{\sqrt 2 } \over 2} + \sqrt 3 } \right)\,\left( { - 1 - {{\sqrt 3 } \over 3}} \right) = \left( {{{\sqrt 2 } \over 2} - \sqrt 3 - 1} \right)\left( {1 + {{\sqrt 3 } \over 3}} \right) \cr}.\)

b) Ta có

\(\eqalign{
& \cos {120^0} = \cos ({180^0} - {60^0}) = - \cos {60^0} = - {1 \over 2} \cr
& \cot {135^0} = \cot ({180^0} - {45^0}) = - \cot {45^0} = - 1 \cr} \)

Do đó

\(\eqalign{
& {\sin ^2}{90^0} + {\cos ^2}{120^0} + {\cos ^2}{0^0} - {\tan ^2}{60^0} + {\cot ^2}{135^0} \cr
& = 1 + {1 \over 4} + 1 - 3 + 1 = {1 \over 4} \cr} \)

loigiaihay.com

>>Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan