Trắc nghiệm Bài 60: Phép cộng phân số Toán 4 Kết nối tri thức
Đề bài
Thực hiện tính:
Dấu thích hợp để điền vào chỗ chấm là:
Hoa cắt một sợi dây để gói quà. Lần thứ nhất cắt đi $\frac{{33}}{{57}}$ sợi dây. Lần thứ hai cắt đi $\frac{{18}}{{57}}$ sợi dây. Hỏi Hoa đã cắt tất cả bao nhiêu phần sợi dây?
-
A.
$\frac{{41}}{{57}}$ sợi dây
-
B.
$\frac{{56}}{{57}}$ sợi dây
-
C.
$\frac{{51}}{{57}}$ sợi dây
-
D.
$\frac{{52}}{{57}}$ sợi dây
Thực hiện phép tính:
Tính rồi rút gọn: \(\dfrac{5}{{12}} + \dfrac{1}{4}\)
A. \(\dfrac{2}{3}\)
B. \(\dfrac{3}{8}\)
C. \(\dfrac{8}{{12}}\)
D. \(\dfrac{6}{{16}}\)
Tính: \(\dfrac{3}{4} + \dfrac{4}{5}\)
A. \(\dfrac{7}{9}\)
B. \(\dfrac{{12}}{9}\)
C. \(\dfrac{{29}}{{20}}\)
D. \(\dfrac{{31}}{{20}}\)
Tính: \(5 + \dfrac{2}{9}\)
A. \(\dfrac{7}{9}\)
B. \(\dfrac{{43}}{9}\)
C. \(\dfrac{{47}}{9}\)
D. \(\dfrac{{52}}{9}\)
Tìm \(x\), biết: \(x - \dfrac{3}{7} = \dfrac{4}{{21}}\)
A. \(x = \dfrac{1}{4}\)
B. \(x = \dfrac{{13}}{{21}}\)
C. \(x = \dfrac{{17}}{{21}}\)
D. \(x = \dfrac{{19}}{{21}}\)
Tính: \(\dfrac{1}{2} + \dfrac{5}{{32}} + \dfrac{3}{8}\)
A. \(\dfrac{{39}}{{32}}\)
B. \(\dfrac{{37}}{{32}}\)
C. \(\dfrac{{35}}{{32}}\)
D. \(\dfrac{{33}}{{32}}\)
Chọn dấu thích hợp để điền vào chỗ chấm:
\(\dfrac{1}{8} + \dfrac{3}{5}\,\,\, ...\,\,\,\dfrac{1}{4} + \dfrac{7}{{20}}\)
A. \( < \)
B. \( > \)
C. \( = \)
Một vòi nước giờ thứ nhất chảy được \(\dfrac{1}{3}\) bể nước, giờ thứ hai chảy được \(\dfrac{2}{7}\) bể nước . Hỏi sau hai giờ vòi nước đó chảy được bao nhiêu phần bể nước?
A. \(\dfrac{3}{{10}}\) bể nước
B. \(\dfrac{{13}}{{21}}\) bể nước
C. \(\dfrac{3}{4}\) bể nước
D. \(\dfrac{{23}}{{21}}\) bể nước
Tính bằng cách thuận tiện:
Tính bằng cách thuận tiện rồi rút gọn thành phân số tối giản:
Hộp thứ nhất đựng \(\dfrac{1}{4}kg\) kẹo, hộp thứ hai đựng nhiều hơn hộp thứ nhất \(\dfrac{3}{8}kg\) kẹo nhưng ít hơn hộp thứ ba \(\dfrac{1}{5}kg\) kẹo. Hỏi cả ba hộp đựng bao nhiêu ki-lô-gam kẹo?
A. \(\dfrac{7}{5}kg\)
B. \(\dfrac{{17}}{{10}}kg\)
C. \(\dfrac{{27}}{{20}}kg\)
D. \(\dfrac{{67}}{{40}}kg\)
Lời giải và đáp án
Thực hiện tính:
Áp dụng quy tắc cộng hai phân số có cùng mẫu số: Muốn cộng hai phân số có cùng mẫu số, ta cộng hai tử số với nhau và giữ nguyên mẫu số.
Ta có: \(\dfrac{2}{9} + \dfrac{5}{9} = \dfrac{{2 + 5}}{9} = \dfrac{7}{9}\).
Vậy đáp án đúng điền vào ô trống lần lượt từ trên xuống dưới là \(7\,;\,\,9\).
Dấu thích hợp để điền vào chỗ chấm là:
- Muốn cộng hai phân số cùng mẫu số, ta cộng hai tử số với nhau và giữ nguyên mẫu số.
- Trong hai phân số có cùng mẫu số, phân số nào có tử số lớn hơn thì lớn hơn.
Ta có $\frac{{23}}{{74}} + \frac{{42}}{{74}} = \frac{{65}}{{74}}$
Mà $\frac{{67}}{{74}} > \frac{{65}}{{74}}$ nên $\frac{{67}}{{74}}$> $\frac{{23}}{{74}} + \frac{{42}}{{74}}$
Hoa cắt một sợi dây để gói quà. Lần thứ nhất cắt đi $\frac{{33}}{{57}}$ sợi dây. Lần thứ hai cắt đi $\frac{{18}}{{57}}$ sợi dây. Hỏi Hoa đã cắt tất cả bao nhiêu phần sợi dây?
-
A.
$\frac{{41}}{{57}}$ sợi dây
-
B.
$\frac{{56}}{{57}}$ sợi dây
-
C.
$\frac{{51}}{{57}}$ sợi dây
-
D.
$\frac{{52}}{{57}}$ sợi dây
Đáp án : C
Tìm tổng số phần đoạn dây đã cắt trong 2 lần
Hoa đã cắt tất cả số phần sợi dây là:
$\frac{{33}}{{57}} + \frac{{18}}{{57}} = \frac{{51}}{{57}}$ (sợi dây)
Đáp số: $\frac{{51}}{{57}}$ sợi dây
Thực hiện phép tính:
Muốn cộng ba phân số có cùng mẫu số, ta cộng ba tử số với nhau và giữ nguyên mẫu số; hoặc ta có thể tính lần lượt từ trái sang phải.
Ta có: \(\dfrac{2}{{35}} + \dfrac{9}{{35}} + \dfrac{{22}}{{35}} = \dfrac{{2 + 9 + 22}}{{35}}=\dfrac{{33}}{{35}} \)
Vậy đáp án đúng điền vào ô trống lần lượt từ trên xuống dưới là \(33\,;\,\,35\).
Tính rồi rút gọn: \(\dfrac{5}{{12}} + \dfrac{1}{4}\)
A. \(\dfrac{2}{3}\)
B. \(\dfrac{3}{8}\)
C. \(\dfrac{8}{{12}}\)
D. \(\dfrac{6}{{16}}\)
A. \(\dfrac{2}{3}\)
Quy đồng mẫu số hai phân số, rồi cộng hai phân số đó. Nếu phân số thu được chưa tối giản thì ta rút gọn thành phân số tối giản.
Ta có: \(\dfrac{5}{{12}} + \dfrac{1}{4} = \dfrac{5}{{12}} + \dfrac{3}{{12}} = \dfrac{8}{{12}} = \dfrac{2}{3}\)
Vậy đáp án đúng là \(\dfrac{2}{3}\).
Tính: \(\dfrac{3}{4} + \dfrac{4}{5}\)
A. \(\dfrac{7}{9}\)
B. \(\dfrac{{12}}{9}\)
C. \(\dfrac{{29}}{{20}}\)
D. \(\dfrac{{31}}{{20}}\)
D. \(\dfrac{{31}}{{20}}\)
Quy đồng mẫu số hai phân số, rồi cộng hai phân số đó. Nếu phân số thu được chưa tối giản thì ta rút gọn thành phân số tối giản.
Ta có: \(\dfrac{3}{4} + \dfrac{4}{5} = \dfrac{{15}}{{20}} + \dfrac{{16}}{{20}} = \dfrac{{31}}{{20}}\)
Vậy đáp án đúng là \(\dfrac{{31}}{{20}}\).
Tính: \(5 + \dfrac{2}{9}\)
A. \(\dfrac{7}{9}\)
B. \(\dfrac{{43}}{9}\)
C. \(\dfrac{{47}}{9}\)
D. \(\dfrac{{52}}{9}\)
C. \(\dfrac{{47}}{9}\)
Viết \(5\) dưới dạng phân số là \(\dfrac{5}{1}\) rồi thực hiện phép tính cộng hai phân số.
Ta có: \(5 + \dfrac{2}{9} = \dfrac{5}{1} + \dfrac{2}{9} = \dfrac{{45}}{9} + \dfrac{2}{9} = \dfrac{{47}}{9}\)
Hoặc ta có thể viết gọn như sau: \(5 + \dfrac{2}{9} = \dfrac{{45}}{9} + \dfrac{2}{9} = \dfrac{{47}}{9}\)
Vậy đáp án đúng là \(\dfrac{{47}}{9}\).
Tìm \(x\), biết: \(x - \dfrac{3}{7} = \dfrac{4}{{21}}\)
A. \(x = \dfrac{1}{4}\)
B. \(x = \dfrac{{13}}{{21}}\)
C. \(x = \dfrac{{17}}{{21}}\)
D. \(x = \dfrac{{19}}{{21}}\)
B. \(x = \dfrac{{13}}{{21}}\)
\(x\) ở vị trí số bị trừ, muốn tìm số bị trừ ta lấy hiệu cộng với số trừ.
Ta có:
$\begin{array}{l}x - \dfrac{3}{7} = \dfrac{4}{{21}}\\x = \dfrac{4}{{21}} + \dfrac{3}{7}\\x = \dfrac{4}{{21}} + \dfrac{9}{{21}}\\x = \dfrac{{13}}{{21}}\end{array}$
Vậy \(x = \dfrac{{13}}{{21}}\).
Tính: \(\dfrac{1}{2} + \dfrac{5}{{32}} + \dfrac{3}{8}\)
A. \(\dfrac{{39}}{{32}}\)
B. \(\dfrac{{37}}{{32}}\)
C. \(\dfrac{{35}}{{32}}\)
D. \(\dfrac{{33}}{{32}}\)
D. \(\dfrac{{33}}{{32}}\)
Biểu thức chỉ chứa phép cộng nên ta tính lần lượt từ trái sang phải; hoặc ta quy đồng mẫu số ba phân số sau đó cộng ba tử số với nhau và giữ nguyên mẫu số.
Ta thấy \(32:2 = 16\,\,;\,\,\,32:8 = 4\) nên ta chọn mẫu số chung là \(32\).
Ta có:
\(\dfrac{1}{2} + \dfrac{5}{{32}} + \dfrac{3}{8} = \dfrac{{16}}{{32}} + \dfrac{5}{{32}} + \dfrac{{12}}{{32}} = \dfrac{{16+5+12}}{{32}}= \dfrac{{33}}{{32}}\)
Vậy đáp án đúng là \(\dfrac{{33}}{{32}}\).
Chọn dấu thích hợp để điền vào chỗ chấm:
\(\dfrac{1}{8} + \dfrac{3}{5}\,\,\, ...\,\,\,\dfrac{1}{4} + \dfrac{7}{{20}}\)
A. \( < \)
B. \( > \)
C. \( = \)
B. \( > \)
Tính giá trị biểu thức ở hai vế rồi so sánh kết quả với nhau.
Ta có:
\(\dfrac{1}{8} + \dfrac{3}{5}\,\, = \dfrac{5}{{40}} + \dfrac{{24}}{{40}} = \dfrac{{29}}{{40}}\);
\( \dfrac{1}{4} + \dfrac{7}{{20}} = \dfrac{5}{{20}} + \dfrac{7}{{20}} = \dfrac{{12}}{{20}} = \dfrac{{24}}{{40}}\)
Mà \(\dfrac{{29}}{{40}} > \dfrac{{24}}{{40}}\).
Do đó \(\dfrac{1}{8} + \dfrac{3}{5}\,\,\, > \,\,\,\dfrac{1}{4} + \dfrac{7}{{20}}\).
Vậy dấu thích hợp điền vào ô trống là \( > \).
Một vòi nước giờ thứ nhất chảy được \(\dfrac{1}{3}\) bể nước, giờ thứ hai chảy được \(\dfrac{2}{7}\) bể nước . Hỏi sau hai giờ vòi nước đó chảy được bao nhiêu phần bể nước?
A. \(\dfrac{3}{{10}}\) bể nước
B. \(\dfrac{{13}}{{21}}\) bể nước
C. \(\dfrac{3}{4}\) bể nước
D. \(\dfrac{{23}}{{21}}\) bể nước
B. \(\dfrac{{13}}{{21}}\) bể nước
Muốn tìm số phần bể nước mà vòi chảy được trong hai giờ ta lấy số phần bể vòi chảy trong giờ thứ nhất cộng với số phần bể vòi chảy trong giờ thứ hai.
Sau hai giờ vòi nước đó chảy được số phần bể nước là:
\(\dfrac{1}{3} + \dfrac{2}{7} = \dfrac{{13}}{{21}}\) (bể nước)
Đáp số: \(\dfrac{{13}}{{21}}\) bể nước.
Tính bằng cách thuận tiện:
Nhóm các phân số có cùng mẫu số lại với nhau.
$\begin{array}{l}\dfrac{5}{{12}} + \dfrac{2}{7} + \dfrac{7}{{12}} + \dfrac{5}{7} \\ = \left( {\dfrac{5}{{12}} + \dfrac{7}{{12}}} \right) + \left( {\dfrac{2}{7} + \dfrac{5}{7}} \right)\\ = \dfrac{{12}}{{12}} + \dfrac{7}{7}\\ = \,\,1\,\, + \,\,1\\ = \,\,\,\,\,\, \;2\end{array}$
Tính bằng cách thuận tiện rồi rút gọn thành phân số tối giản:
Rút gọn các phân số đã cho rồi thực hiện tính.
Ta có:
\(\begin{array}{l}\dfrac{4}{{20}} + \dfrac{9}{{30}} + \dfrac{{16}}{{40}} + \dfrac{{25}}{{50}} + \dfrac{{36}}{{60}} + \dfrac{{49}}{{70}} + \dfrac{{64}}{{80}} + \dfrac{{81}}{{90}}\\ = \dfrac{2}{{10}} + \dfrac{3}{{10}} + \dfrac{4}{{10}} + \dfrac{5}{{10}} + \dfrac{6}{{10}} + \dfrac{7}{{10}} + \dfrac{8}{{10}} + \dfrac{9}{{10}}\\ = \dfrac{{2 + 3 + 4 + 5 + 6 + 7 + 8 + 9}}{{10}}\\ = \dfrac{{44}}{{10}}\\ = \dfrac{{22}}{5}\end{array}\)
Vậy đáp án đúng điền vào ô trống lần lượt từ trên xuống dưới là \(22\,;\,\,5\).
Hộp thứ nhất đựng \(\dfrac{1}{4}kg\) kẹo, hộp thứ hai đựng nhiều hơn hộp thứ nhất \(\dfrac{3}{8}kg\) kẹo nhưng ít hơn hộp thứ ba \(\dfrac{1}{5}kg\) kẹo. Hỏi cả ba hộp đựng bao nhiêu ki-lô-gam kẹo?
A. \(\dfrac{7}{5}kg\)
B. \(\dfrac{{17}}{{10}}kg\)
C. \(\dfrac{{27}}{{20}}kg\)
D. \(\dfrac{{67}}{{40}}kg\)
B. \(\dfrac{{17}}{{10}}kg\)
- Hộp thứ hai đựng nhiều hơn hộp thứ nhất \(\dfrac{3}{8}kg\) kẹo nên để tìm số kẹo của hộp thứ hai ta lấy số kẹo của hộp thứ nhất cộng với \(\dfrac{3}{8}kg\).
- Hộp thứ hai đựng ít hơn hộp thứ ba \(\dfrac{1}{5}kg\) kẹo tức là hộp thứ ba đựng nhiều hơn hộp thứ hai \(\dfrac{1}{5}kg\) kẹo, để tìm số kẹo của hộp thứ ba ta lấy số kẹo của hộp thứ hai cộng với \(\dfrac{1}{5}kg\).
- Số kẹo của cả ba hộp = số kẹo hộp thứ nhất + số kẹo hộp thứ hai + số kẹo hộp thứ ba.
Hộp thứ hai đựng số ki-lô-gam kẹo là:
\(\dfrac{1}{4} + \dfrac{3}{8} = \dfrac{5}{8}\,\,(kg)\)
Hộp thứ ba đựng số ki-lô-gam kẹo là:
\(\dfrac{5}{8} + \dfrac{1}{5} = \dfrac{{33}}{{40}}\,\,(kg)\)
Cả ba hộp đựng số ki-lô-gam kẹo là:
\(\dfrac{1}{4} + \dfrac{5}{8} + \dfrac{{33}}{{40}} = \dfrac{{68}}{{40}} = \dfrac{{17}}{{10}}\,\,(kg)\)
Đáp số: \(\dfrac{{17}}{{10}}kg.\)
Luyện tập và củng cố kiến thức Bài 61: Phép trừ phân số Toán 4 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 62: Luyện tập chung Toán 4 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
- Trắc nghiệm Bài 71: Ôn tập hình học và đo lường Toán 4 Kết nối tri thức
- Trắc nghiệm Bài 70: Ôn tập phép tính với phân số Toán 4 Kết nối tri thức
- Trắc nghiệm Bài 69: Ôn tập phân số Toán 4 Kết nối tri thức
- Trắc nghiệm Bài 68: Ôn tập phép tính với số tự nhiên Toán 4 Kết nối tri thức
- Trắc nghiệm Bài 67: Ôn tập số tự nhiên Toán 4 Kết nối tri thức