Giải bài 5 trang 11 SGK Toán 10 tập 1 – Cánh diều>
Dùng kí hiệu với mọi hoặc tồn tại để viết các mệnh đề sau: a) Có một số nguyên không chia hết cho chính nó. b) Mọi số thực cộng với 0 đều bằng chính nó.
Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Cánh diều
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Đề bài
Dùng kí hiệu “\(\forall \)” hoặc “\(\exists \)” để viết các mệnh đề sau:
a) Có một số nguyên không chia hết cho chính nó.
b) Mọi số thực cộng với 0 đều bằng chính nó.
Phương pháp giải - Xem chi tiết
a) Viết mệnh đề về dạng “\(\exists x \in X,\;P(x)\)”.
b) Viết mệnh đề về dạng “\(\forall x \in X,\;P(x)\)”.
Lời giải chi tiết
a) \(\exists x \in \mathbb{Z},\;x \not{\vdots} \;x.\)
b) \(\forall x \in \mathbb{R},\;x + 0 = x.\)
- Giải bài 6 trang 11 SGK Toán 10 tập 1 – Cánh diều
- Giải bài 7 trang 11 SGK Toán 10 tập 1 – Cánh diều
- Giải bài 4 trang 11 SGK Toán 10 tập 1 – Cánh diều
- Giải bài 3 trang 11 SGK Toán 10 tập 1 – Cánh diều
- Giải bài 2 trang 11 SGK Toán 10 tập 1 – Cánh diều
>> Xem thêm
Các bài khác cùng chuyên mục
- Lý thuyết Ba đường conic - SGK Toán 10 Cánh diều
- Lý thuyết Phương trình đường tròn - SGK Toán 10 Cánh diều
- Lý thuyết Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng - SGK Toán 10 Cánh diều
- Lý thuyết Phương trình đường thẳng - SGK Toán 10 Cánh diều
- Lý thuyết Biểu thức tọa độ của các phép toán vecto - SGK Toán 10 Cánh diều
- Lý thuyết Ba đường conic - SGK Toán 10 Cánh diều
- Lý thuyết Phương trình đường tròn - SGK Toán 10 Cánh diều
- Lý thuyết Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng - SGK Toán 10 Cánh diều
- Lý thuyết Phương trình đường thẳng - SGK Toán 10 Cánh diều
- Lý thuyết Biểu thức tọa độ của các phép toán vecto - SGK Toán 10 Cánh diều