

Câu 9 trang 135 SGK Đại số và Giải tích 11 Nâng cao
Biểu diễn các số thập phân
Biểu diễn các số thập phân vô hạn tuần hoàn sau dưới dạng phân số :
LG a
\(0,444…\)
Phương pháp giải:
Sử dụng công thức tính tổng cấp số nhân lùi vô hạn \(S = \frac{{{u_1}}}{{1 - q}}\)
Lời giải chi tiết:
Ta có:
\(\eqalign{
& 0,444... = 0,4 + 0,04 + 0,004 + ... \cr
& = {4 \over {10}} + {4 \over {{{10}^2}}} + {4 \over {{{10}^3}}} + ... \cr
& = 4\left( {{1 \over {10}} + {1 \over {{{10}^2}}} + ...} \right) \cr
& = 4.{{{1 \over {10}}} \over {1 - {1 \over {10}}}} = {4 \over 9} \cr} \)
LG b
\(0,2121…\)
Lời giải chi tiết:
\(\eqalign{
& 0,2121... = 0,21 + 0,0021 + ... \cr
& = {{21} \over {{{10}^2}}} + {{21} \over {{{10}^4}}} + ... \cr &= 21\left( {{1 \over {{{10}^2}}} + {1 \over {{{10}^4}}} + ...} \right) \cr
& = 21.{{{1 \over {{{10}^2}}}} \over {1 - {1 \over {{{10}^2}}}}} = {{21} \over {99}} = {7 \over {33}} \cr} \) .
LG c
\(0,32111…\)
Lời giải chi tiết:
\(\eqalign{
& 0,32111...\cr & = {{32} \over {100}} + {1 \over {1000}} + {1 \over {10000}}+ ... \cr
& = \frac{{32}}{{100}} + \frac{1}{{1000}}\left( {1 + \frac{1}{{10}} + \frac{1}{{{{10}^2}}} + ...} \right)\cr &= {{32} \over {100}} + {1 \over {1000}}.{1 \over {1 - {1 \over {10}}}}\cr & = {{32} \over {100}} + {1 \over {900}} = {{289} \over {900}} \cr} \)
Loigiaihay.com


- Câu 10 trang 135 SGK Đại số và Giải tích 11 Nâng cao
- Câu 8 trang 135 SGK Đại số và Giải tích 11 Nâng cao
- Câu 7 trang 135 SGK Đại số và Giải tích 11 Nâng cao
- Câu 6 trang 134 SGK Đại số và Giải tích 11 Nâng cao
- Câu 5 trang 134 SGK Đại số và Giải tích 11 Nâng cao
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay
>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |