Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
Câu hỏi trắc nghiệm ôn tập chương II
Câu 8 trang 80 SGK Hình học 11 Nâng cao >
Cho tứ diện đều ABCD có cạnh bằng a. Gọi G là tọng tâm tam giác ABC. Cắt tứ diện bởi mp(GCD) thì diện tích của thiết diện là :
Đề bài
Cho tứ diện đều ABCD có cạnh bằng a. Gọi G là tọng tâm tam giác ABC. Cắt tứ diện bởi mp(GCD) thì diện tích của thiết diện là :
A. \({{{a^2}\sqrt 3 } \over 2}\)
B. \({{{a^2}\sqrt 2 } \over 4}\)
C. \({{{a^2}\sqrt 2 } \over 6}\)
D. \({{{a^2}\sqrt 3 } \over 4}\)
Lời giải chi tiết

Gọi I là trung điểm của AB. Thiết diện cần tìm là ΔCID
Gọi J là trung điểm CD
ΔCID cân nên IJ ⊥ CD ⇒ \({S_{ICD}} = {1 \over 2}IJ.CD\)
Ta có:
\(\eqalign{ & I{J^2} = C{I^2} - C{J^2} = {\left( {{{a\sqrt 3 } \over 2}} \right)^2} - {{{a^2}} \over 4} = {{{a^2}} \over 2} \cr & \Rightarrow IJ = {{a\sqrt 2 } \over 2} \Rightarrow {S_{ICD}} = {1 \over 2}.{{a\sqrt 2 } \over 2}.a = {{{a^2}\sqrt 2 } \over 4} \cr} \)
Chọn (B)
Loigiaihay.com




