Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
Câu hỏi và bài tập ôn tập chương I
Câu 45 trang 47 SGK Đại số và Giải tích 11 Nâng cao>
Đưa các biểu thức sau về dạng Csin(x + α) :
Đưa các biểu thức sau về dạng \(C\sin(x + α)\)
LG a
\(\sin x + \tan {\pi \over 7}\cos x\)
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}
\sin x + \tan \frac{\pi }{7}\cos x\\
= \sin x + \frac{{\sin \frac{\pi }{7}}}{{\cos \frac{\pi }{7}}}.\cos x\\
= \sin x + \frac{{\sin \frac{\pi }{7}\cos x}}{{\cos \frac{\pi }{7}}}\\
= \frac{{\sin x\cos \frac{\pi }{7} + \sin \frac{\pi }{7}\cos x}}{{\cos \frac{\pi }{7}}}\\
= \frac{{\sin \left( {x + \frac{\pi }{7}} \right)}}{{\cos \frac{\pi }{7}}}
\end{array}\)
\( = \frac{1}{{\cos \frac{\pi }{7}}}\sin \left( {x + \frac{\pi }{7}} \right)\)
LG b
\(\tan {\pi \over 7}\sin x + \cos x\)
Lời giải chi tiết:
\(\begin{array}{l}
\tan \frac{\pi }{7}\sin x + \cos x\\
= \frac{{\sin \frac{\pi }{7}}}{{\cos \frac{\pi }{7}}}.\sin x + \cos x\\
= \frac{{\sin \frac{\pi }{7}\sin x}}{{\cos \frac{\pi }{7}}} + \cos x\\
= \frac{{\sin \frac{\pi }{7}\sin x + \cos x\cos \frac{\pi }{7}}}{{\cos \frac{\pi }{7}}}\\
= \frac{{\cos \left( {x - \frac{\pi }{7}} \right)}}{{\cos \frac{\pi }{7}}} = \frac{{\cos \left( {\frac{\pi }{7} - x} \right)}}{{\cos \frac{\pi }{7}}}\\
= \frac{{\sin \left( {\frac{\pi }{2} - \frac{\pi }{7} + x} \right)}}{{\cos \frac{\pi }{7}}}\\
= \frac{{\sin \left( {\frac{{5\pi }}{{14}} + x} \right)}}{{\cos \frac{\pi }{7}}}\\
= \frac{1}{{\cos \frac{\pi }{7}}}\sin \left( {x + \frac{{5\pi }}{{14}}} \right)
\end{array}\)
Loigiaihay.com




