Câu 24 trang 111 SGK Hình học 11 Nâng cao


Cho hình chóp S.ABCD có đáy là hình vuông cạnh a và SA ⊥ (ABCD), SA = x. Xác định x để hai mặt phẳng (SBC) và (SDC) tạo với nhau góc 60˚.

Đề bài

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a và SA ⊥ (ABCD), SA = x. Xác định x để hai mặt phẳng (SBC) và (SDC) tạo với nhau góc 60˚.

Lời giải chi tiết

Gọi O là giao điểm của AC và BD. Trong mặt phẳng (SAC) kẻ OO1 vuông góc với SC.

Vậy góc giữa hai mp(SBC) và (SDC) bằng góc giữa hai đường thẳng BO1 và DO1.

Mặt khác OO1 ⊥ BD, OO1 < OC mà OC = OB nên \(\widehat {B{O_1}O} > 45^\circ .\)

Tương tự \(\widehat {D{O_1}O} > 45^\circ \) tức \(\widehat {B{O_1}D} >90^\circ \)

Như vậy hai mặt phẳng (SBC) và (SDC) tạo với nhau góc \(60^\circ \) khi và chỉ khi: 

\(\widehat {B{O_1}D} =120^\circ \) \( \Leftrightarrow\) \(\widehat {B{O_1}O} = 60^\circ \) (vì ΔBO1D cân tại O1)

\( \Leftrightarrow BO = O{O_1}\tan 60^\circ  \) \(\Leftrightarrow BO = O{O_1}\sqrt 3 \)

Ta có \(O{O_1} \bot SC\) nên \(\widehat {O{O_1}C} = {90^0}\)

Xét tam giác \(CO{O_1}\) vuông tại \({O_1}\) có:

\(O{O_1} = OC\sin \widehat {OC{O_1}} = OC\sin \widehat {ACS}\) \( = OC.{{SA} \over {SC}}\)

Như vậy : \(BO = O{O_1}\sqrt 3  \Leftrightarrow BO = \sqrt 3 .OC.{{SA} \over {SC}} \) \(\Leftrightarrow SC = \sqrt 3 .SA\)

\( \Leftrightarrow \sqrt {{x^2} + 2{a^2}}  = \sqrt 3 .x \Leftrightarrow x = a\)

Vậy khi x = a thì hai mặt phẳng (SBC) và (SDC) tạo với nhau góc 60˚

Loigiaihay.com


Bình chọn:
4.2 trên 10 phiếu

Các bài liên quan: - Bài 4: Hai mặt phẳng vuông góc

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài