Câu 22 trang 23 SGK Hình học 11 Nâng cao


Đa giác lồi n cạnh gọi là n – giác đều nếu tất cả các cạnh của nó bằng nhau và tất cả các góc của nó bằng nhau khi và chỉ khi chúng có cạnh bằng nhau

Đề bài

Đa giác lồi n cạnh gọi là n-giác đều nếu tất cả các cạnh của nó bằng nhau và tất cả các góc của nó bằng nhau. Chứng tỏ rằng hai n-giác đều bằng nhau khi và chỉ khi chúng có cạnh bằng nhau.

Lời giải chi tiết

Theo định nghĩa, hai n-giác đều bằng nhau thì cạnh bằng nhau.

Ngược lại, giả sử hai n-giác đều A1A2…An có cạnh bằng nhau

Khi đó nếu gọi O và O’ lần lượt là tâm các đường tròn ngoại tiếp hai đa giác đó thì hai tam giác OA1A2 và O’A’1A’2  bằng nhau

Vậy có phép dời hình F biến tam giác OA1A2 thành tam giác O’A’1A’2.

Vì hai tam giác OA2A3 và O’A’2A’3 cũng bằng nhau nên F biến điểm A3 thành điểm A’3 (vì A3 không thể biến thành A’1)

Lập luận tương tự ta cũng có F biến các điểm A4,…, An lần lượt thành các điểm A,…, An

Như vậy hai đa giác đều đã cho bằng nhau

Loigiaihay.com


Bình chọn:
3.8 trên 4 phiếu

Các bài liên quan: - Bài 5. Hai hình bằng nhau

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài